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ABSTRACT

A long-standing challenge of deep learning models involves how to
handle noisy labels, especially in applications where human lives
are at stake. Adoption of the data Shapley Value (SV), a coopera-
tive game theoretical approach, is an intelligent valuation solution to
tackle the issue of noisy labels. Data SV can be used together with
a learning model and an evaluation metric to validate each training
point’s contribution to the model’s performance. The SV of a data
point, however, is not unique and depends on the learning model, the
evaluation metric, and other data points collaborating in the training
game. However, effects of utilizing different evaluation metrics for
computation of the SV, detecting the noisy labels, and measuring the
data points’ importance has not yet been thoroughly investigated. In
this context, we performed a series of comparative analyses to assess
SV’s capabilities to detect noisy input labels when measured by dif-
ferent evaluation metrics. Our experiments on COVID-19-infected
of CT images illustrate that although the data SV can effectively
identify noisy labels, adoption of different evaluation metric can sig-
nificantly influence its ability to identify noisy labels from different
data classes. Specifically, we demonstrate that the SV greatly de-
pends on the associated evaluation metric.

Index Terms: Data Shapley value, Noisy Labels, Data Valua-
tion, Medical Imaging, Capsule Networks.

1. INTRODUCTION

Deep learning has proven remarkable success in several medical
fields, including medical imaging, where advanced computer vision
algorithms have delivered near human-level performance in specific
tasks. Several factors may affect the success of a deep learning al-
gorithm, including model structure, initialization of the model pa-
rameters, training methods, and computational hardware. However,
the most influential factor is having access to large-scale data sets
with reliable labels. Collecting large-scale data sets with reliable la-
bels is, however, a significantly challenging task in several appli-
cations, particularly within the medical domain. On the one hand,
patients’ privacy preservation and data sharing protocols prohibit
hospitals and clinical institutions from releasing their in-house data
sets. On the other hand, labeling medical images requires knowledge
and expertise from radiologists and physicians, making the labeling
process resource-intensive. To overcome this challenge, extracting
pathology labels of large-scale medical images from radiology re-
ports with the help of text mining [1]], human-machine collaborative
techniques [2}/3]], and the use of non-expert annotators are some of
the proposed solutions in the literature [4]]. However, the provided la-
bels by such methods are noisy and inaccurate compared to manually

labeled images [5]. Consequently, handling noisy labels in medical
imaging data sets is crucial for developing high-performance pro-
cessing/learning models.

Prior work: Learning from a training data set with noisy labels
has been a challenging task within the deep learning domain for a
long time. Research studies indicate that noisy labels may have a
more significant adverse effect on the performance of deep learn-
ing models than the noises in data attributes/measurements [6]]. Pro-
posed techniques for handling noisy labels in medical imaging data
sets include weakly supervised learning [[7-9]], customized training
methods [4]], and re-weighting training samples [[10]. Another ap-
proach to tackle the noisy label problem is to adopt Shapley Value
(SV), a cooperative game theoretical method, where each training
point is considered a player in the training game, and its contribu-
tion to any subset of players is measured using a performance eval-
uation metric. Researchers have leveraged the SV for data valuation
and measuring the quality of data points in different deep learning
applications [[11H18]l. In [[19] and [20], authors utilized the SV in a
federated learning study to measure the quality of data from each
participator. A recent study [17] has investigated the capability of
the SV in quantifying the importance of training data points in the
performance of the learning model in a large-scale X-ray data set. It
should be noted that the SV of a data point is not a unique value and
depends on the learning model, the evaluation metric, and other data
points collaborating in the training game. So far, research studies
have used only one specific evaluation metric in their SV compu-
tation process, such as accuracy metric in [|17,|19] and Area under
the ROC curve (AUC-ROC) metric in [20] to demonstrate the data
SV capability in measuring the quality of data points. However, the
effect of utilizing different evaluation metrics in computing the SV,
detecting the noisy labels, and measuring the data points’ importance
in the training process has never been investigated.

Contributions: This study investigates effects of incorporating dif-
ferent evaluation metrics in determining the data SV and quantifying
the importance of each training point in the model’s performance. To
the best of our knowledge, this is the first study that explores adop-
tion of various evaluation metrics in measuring the data SV and de-
tecting noisy input labels. The data SV measures the contribution of
each training point to all possible subsets of the training set, having
an exponential complexity in the size of the training set. Therefore,
we use a permutation sampling approach to approximate the data
SV. We assess the capability of data SV obtained by commonly-used
classification metrics, including accuracy, recall, and specificity in
detecting the noisy labels through a set of experiments with different
noise levels. The experiments are performed based on a COVID- 19
screening task from chest CT scans by implementing a lightweight
Capsule-network-based classifier [21] to extract discriminative fea-



tures from chest CT scans and distinguish COVID-19-infected CT
images from normal ones [22]. The Capsule-network-based classi-
fier can represent each CT image via a small feature vector. Since
calculating the SV requires retraining the learning model on multi-
ples coalitions of training samples, we use a fast classifier to make
our data valuation process time-efficient. Therefore, the extracted
feature vector is fed into a logistic regression classifier for final de-
cision making. The results indicate that the measured data SV is not
unique and is highly dependent on the evaluation metric. We demon-
strate that despite the great potential of the data SV in detecting noisy
labels, its performance is extremely affected by the adopted evalua-
tion metric.

2. DATA SHAPLEY VALUE

This study implements the data SV in its data valuation approach
for identifying training samples with noisy labels. Data SV [23] is a
well-known measure in cooperative game theory for assigning a fair
payoff to each player of the game by taking into account its contri-
bution to all possible coalitions of the players. The training process
of an ML/DL model can be assumed as a game where training data
points are players that collaborate to achieve the highest model per-
formance. Therefore, the SV can measure the importance of training
samples in the performance of the ML/DL model [|I 1H18]]. Having a
training set D, the SV of a data point ¢ € D is calculated as
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where S is any possible subset of D not including 7, [V is the size of
the training set D, and V' is an evaluation metric for measuring the
model performance. V{S} is the performance of the model trained
on the subset S and measured by the evaluation metric V. In other
words, the SV of a training data point ¢ is its average marginal con-
tribution to all subsets of .S, which can be interpreted as a quality
measure for data assessment. However, computing SV for a player
requires computing its marginal contribution to all possible coali-
tions of game players, which has exponential complexity in the num-
ber of players. Moreover, in data SV computation, calculating each
marginal contribution, V' {S'} requires training the model on S that
makes the computation process more time-consuming. To overcome
this challenge, we use a permutation sampling method [18] to ap-
proximate the data SV. For this purpose, we use an equivalent form
of Eq.[T]as follows

SVi = 7 SUIVAST Ui} - VST, @
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where 11 is all possible permutations of data points, mell is a sam-
ple permutation of data points, and S7 is the set of training points
coming before data point ¢ in permutation 7. Indeed, in each ran-
dom permutation, we can assume that data points are joining the
training game in random order. Then, each data point will receive
the marginal contribution that his collaboration brings to the training
points which have already played their role in the game. The data
SV for each training point would be its average marginal contribu-
tions over all possible permutations. In practice, using a permutation
sampling approach, the data SV will converge after 3/N permuta-
tions [16]. It is worth mentioning that the SV of a data point is not a
unique value and depends on the learning model, the evaluation met-
ric, and other data points collaborating in the training game. So far,
other studies have used a specific evaluation metric in their SV com-
putation process and demonstrated the data SV capability in measur-

Table 1. Training, validation and test sets used in our experiments.

COVID-19 | Normal | Total

Training set 100 400 500
Validation Set 50 200 250
Test Set 241 759 1000

ing the quality of data points. Here, we perform a set of experiments
to investigate the effect of different evaluation metrics in measur-
ing the SV, quantifying the quality of training points, and detecting
noisy labels. We use the standard evaluation metrics in classification
tasks, including accuracy, recall, and specificity, and discuss their
effectiveness in detecting noisy labels in both classes of data. Our
data valuation process, illustrated in Fig. [I] includes: i) training a
deep classifier on a training set, ii) extracting high-resolution fea-
tures from training CT images using the trained deep classifier and
feeding them into a fast classifier, which is logistic regression in this
study, iii) calculating the SV of each training point based on differ-
ent evaluation metric, iv) analyzing the obtained SVs and detecting
noisy labels.

The deep classifier used for discriminating COVID-19 in-
fected CT images from the normal ones is a lightweight DL model
containing two convolutional and two Capsule layers. A batch-
normalization layer follows the first convolutional layer, and a
max-pooling layer follows the second one. The ReLU activation
function is applied after each convolutional layer to capture non-
linear patterns. The number of channels for each convolutional layer
is 64. The output of the max-pooling layer is reshaped and fed to a
Capsule layer to extract high-resolution features from CT images.
Finally, the last Capsule layer predicts the probability that each CT
image belongs to infected or non-infected classes. It is noteworthy
that screening COVID-19-infected CT images on a slice-level basis
can be a primary step in detecting COVID-19 patients from healthy
cases. We use a weighted loss function to tackle the imbalance
dataset, considering a higher penalty to the samples from minority
class, which is COVID-19 infected slices in our case. By extracting
high-resolution features from the last Capsule layer, each CT image
with a matrix size of 512 x 512 is presented in a 1 X 16 vector. Next,
extracted features from the training set and their corresponding
labels are used in the SV computation process. For more informa-
tion about Capsule network-based classifiers and the weighted loss
function, please refer to Reference [24].

3. DATASET DESCRIPTION

The dataset used in our experiments is a combination of two different
open-access datasets. For non-COVID-19 CT images, we used a sub-
set of 50 normal cases from our recently released dataset referred to
as the “COVID-CT-MD” [25]], which is available through Figshareﬂ
For CT images with the evidence of COVID-19 lesions, we used a
public dataset containing chest CT volumes of 10 COVID-19 pa-
tients [26], where three expert radiologists have annotated COVID-
19 manifestations. In both datasets, the matrix size of the CT images
is 512 x 512 pixels. We randomly split the dataset into three inde-
pendent groups, as presented in table [I] including 100, 50, and 241
COVID-19 infected CT scans, and 400, 200, and 759 normal CT
scans for training, validation, and test sets. The extracted features
from the training set are used to train the logistic regression model

Uhttps://figshare.com/s/c202153d42c98f09ad0
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Fig. 1. The proposed framework to quantify the quality of data and discriminate COVID-19 infected CT images from normal ones.
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Fig. 2. The convergence of SV for randomly selected training samples. The
x-axis indicates the number of iteration in SV computation process and the
y-axis indicates the estimate of SV.

over multiple permutation sampling, and the test set is used for mea-
suring the model performance during the SV computation process.

4. EXPERIMENTAL RESULTS

As the pre-processing step, each CT slice is normalized based on its
pixel intensities’ mean and standard deviation. Furthermore, we uti-
lize the real-time data augmentation method to enhance the model’s
performance on unseen data. Each mini-batch of original images
during the training process is transformed into synthetic images
using conventional data augmentation strategies such as zooming,
shifting, and shearing. Over the training’ epochs, the model will ob-
serve each augmented image only once, resulting in an improvement
in the model’s generalization. In each mini-batch, 16 CT images are
fed to the network. The Adam optimization algorithm with an initial
learning rate of 0.001 minimizes the loss function over the training
process. The number of passes through the training set is set to 100.
However, to mitigate the model over-fitting, the training process will
stop whenever the loss function on the validation set is not reduced
over five epochs. Finally, the SV computation is performed using the
training set as the players for training the logistic regression classi-
fier and the test set for measuring the model performance trained on
any possible subset of training points. As mentioned previously, we
have 100 COVID-19 infected CT slices and 400 normal CT images
as our training set. Since we aim to deal with noisy labels in the
training set, we manually add some noises in the labels of our train-
ing set and investigate the capability of the SV obtained based on
different evaluation metrics in detecting noisy labels. We run three
experiments with three different noise levels, including 10%, 20%,
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Fig. 3. Mapping between the data SV and the type of data class derived via
different evaluation metrics (Plots are related to the Exp. III).

and 30% in each class of data. Therefore, 10, 20, and 30 positive CT
images and 40, 80, and 120 normal CT scans have incorrect labels
in experiment I, II, and III, respectively.

In each experiment, first, we train the Capsule-network-based
classifier using the training set with noisy labels. Next, the extracted
features from the trained classifier are fed into a logistic regression
classifier to compute the data SV. It is worth mentioning that comput-
ing the SV for each training point requires re-training the classifier
on multiple subsets of training points, making the data evaluation
process time-intensive. Hence, we use a fast classifier such as logis-
tic regression to make the computation process affordable. We adopt
different evaluation metrics, including accuracy, recall, and speci-
ficity, to calculate the data SV. We run the computation process for
2000 permutations to assure the convergence of the estimated data



Table 2. The efficiency of data SV obtained based on different evaluation metrics in detecting noisy labels of each class of data in Exp I, I, and 11 with

the noise level of 10%, 20%, and 30%.

Experiments

Positive CT images

mislabeled as negative

Negative CT images

mislabeled as positive

SV-ace SV-rec SV-spc  SV-acc SV-rec SV-spc
Fraction of noisy labels in the
1.00 1.00 0.00 0.28 0.28 0.68
Exp. | lowest 10% of data SVs
(noise level: 10%) : Fraction of noisy labels in the
1.00 1.00 0.00 0.30 0.30 0.78
lowest 30% of data SVs
Fraction of noisy labels in
1.00 1.00 0.00 0.23 0.18 0.96
Exp. Il the lowest 20% of data SVs
(noise level: 20%) : Fraction of noisy labels in the
1.00 1.00 0.00 0.29 0.19 1.00
lowest 30% of data SVs
Exp. Il Fraction of noisy labels in the
. 0.97 0.97 0.00 0.35 0.07 1.00
(noise level: 30%) lowest 30% of data SVs

SVs. Fig. [2]presents the convergence of the SV for two randomly se-
lected training samples. As can be observed, the estimated SV con-
verges after 3N = 1500 permutations, which is in agreement with
previous works [16].

Next, we order the training points based on their estimated SV
and mapped them with the corresponding label in our input labels
that contains some noisy labels (green points in column left) and
the ground-truth labels, which are correct labels (blue lines in right
column), as visualized in Fig. E} As can be observed, when adopt-
ing accuracy or recall metrics, all training points with the highest
data SV belong to the positive class. In contrast, the specificity met-
ric ranks all training points with the negative input labels before the
data points with positive input labels. The plots also indicate that al-
though the specificity metric puts all images with the positive input
label among the lowest data SVs, the least valuable data points are
the ones mislabeled as positive classes (their ground-truth label is
negative). This reveals the capability of the SV in identifying noisy
labels with the negative ground-truth labels (mislabeled as the posi-
tive images in the input label) when adopting the specificity metric.
On the contrary, the majority of the least valuable training points ob-
tained by the accuracy and recall metrics belong to negative input
labels. However, according to the plots, the accuracy metric assigns
more value to the images with negative input labels than recall met-
ric. In addition, by comparing the plots in left and right columns, we
can conclude that the least valuable data points obtained by both ac-
curacy and recall metrics are the images mislabeled as the negative
ones (have positive ground-truth labels). This indicates the possi-
bility of detecting noisy labels with the positive ground-truth labels
when using the accuracy or recall metrics in computing the SV.

Furthermore, we investigate the effect of utilizing different eval-
uation metrics in the SV computation process for identifying noisy
labels. We determined the fraction of noisy labels ranked as the
10%, 20%, and 30% of the lowest data SVs for experiments I,
I1, and 111, respectively. We also consider the fraction of noisy
labels ranked as the lowest 30% data SVs in all experiments. As
demonstrated in Table [2] when adopting accuracy or recall metrics,
all noisy labels with the positive ground-truth label (which had been
incorrectly labeled as negative ones in input labels) have been cor-
rectly identified in experiments I and 1. Conversely, when utilizing
specificity metric in the SV computation process, no noisy label with
the positive ground-truth label (mislabeled as negative images in the
input labels) is ranked between the lowest 30% of data SVs. The
results indicate that the adoption of the specificity metric has been
more successful in detecting noisy labels with the negative ground-

truth label (incorrectly labeled as positive ones in input labels). All
noisy labels with the negative ground-truth labels (both correctly la-
beled and mislabeled ones) have been ranked in the lowest 30% data
SVs. Although the accuracy and recall metrics show the same perfor-
mance in detecting noisy labels with a negative ground-truth label,
the performance of the accuracy metric succeeds the recall metric as
the noise level increases.

It should be mentioned that, to the best of our knowledge, the
adoption of different evaluation metrics in measuring the data SV has
not been discussed in previous researches. However, Reference [17]],
which has performed an SV-based data valuation study using the
accuracy metric on an X-ray data set containing 2000 training points,
illustrates that all the 100 training points with the highest SVs belong
to the positive class. Besides, with the help of three radiologists, they
figured out that out of the 100 lowest data SVs in their experiment,
there were 65 mislabeled images where 80% of them were positive
images that had been incorrectly labeled as negative ones. Indeed,
their experiments are in accordance with our results, confirming that
by utilizing the accuracy metric in computing the SV, the images
with positive labels will receive the highest values. In addition, it
would be more likely to detect mislabeled images with ground-truth
positive labels (mislabeled as negative ones). Our findings show that,
while the data SV has a lot of potential for detecting noisy labels in
training sets, it is extremely dependent on the evaluation metric used.

5. CONCLUSION

This research explores the effect of using different evaluation metrics
in data SV computation and its capability and limitation in identify-
ing noisy labels in a training set. We examine the standard evaluation
metrics in classification tasks, including accuracy, recall, and speci-
ficity in calculating the data SV on a chest CT scan data set. Our
findings show that, while the data SV has a lot of potential for detect-
ing noisy labels in training sets, it depends highly on the evaluation
metric used. We also demonstrate that the data SV is not a unique
value and will differ by incorporating different evaluation metrics.
This research study conducted experiments on a binary classifica-
tion task and a limited data set. We leave the implementation of data
SV based on various evaluation metrics and investigating its capabil-
ities and limitations in detecting noisy labels in a multi-institutional
data set and a multi-class classification problem to the future. Ex-
ploring the dependency of the data SV on different types of learning
algorithms is another future direction of the present work.
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