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ABSTRACT
Grapheme-to-phoneme (G2P) conversion is the process of
converting the written form of words to their pronunciations.
It has an important role for text-to-speech (TTS) synthesis and
automatic speech recognition (ASR) systems. In this paper,
we aim to evaluate and enhance the robustness of G2Pmodels.
We show that neural G2P models are extremely sensitive to
orthographical variations in graphemes like spelling mistakes.
To solve this problem, we propose three controlled noise intro-
ducing methods to synthesize noisy training data. Moreover,
we incorporate the contextual information with the baseline
and propose a robust training strategy to stabilize the train-
ing process. The experimental results demonstrate that our
proposed robust G2P model (r-G2P) outperforms the baseline
significantly (-2.73% WER on Dict-based benchmarks and
-9.09% WER on Real-world sources).

Index Terms— grapheme-to-phoneme, transformer, syn-
thetic noise, adversarial perturbation, contextual information

1. INTRODUCTION

Grapheme-to-phoneme (G2P) conversion generates a phonetic
transcription from the written form of words. It is essential to
develop a phonemic lexicon for TTS and ASR systems [1–4].
For this purpose, G2P techniques are used. For instance,
modern TTS systems adopt G2P models as their frontend.
Thus the performance of the overall system depends on the
accuracy of G2P conversion. Meanwhile, TTS systems need
to pronounce real-world inputs of diverse sources, like web
pages or translated texts. The noise of real-world data can ex-
hibit in many forms, such as spelling mistakes, newly emerged
words, or even changed spellings over time. Unlike human
who can easily pronounce these, G2P models may fail badly
on such words. For example, "occurred" is commonly mis-
spelled as "occured". The Transformer G2P [5] converts it to
[@kjUr:d], which should be [@kE:d]. "pronounciation" is an-
other common misspelling with an extra ’o’, this typo results
in [proUnAUnsi:eıS@n], which should be [proUn@nsi:eıS@n].

‡Work done during an internship at Ping An Technology.
* Corresponding author: Jianzong Wang, jzwang@188.com.

G2P models have shown well performances on the clean
text [6, 7], but they suffer from substandard real-world in-
puts. Indeed, G2P conversion can be considered as a neural
machine translation (NMT) task, where we need to trans-
late source graphemes into target phonemes. While many
researches have focused on the robustness of NMT [8], this is
the first study that evaluates and enhances the robustness of
G2P conversion in real-world noisy scenarios. One of state-of-
the-art models, Transformer G2P, is adopted as our baseline.
Our contributions are three-fold:

• We confirm G2P models’ vulnerability to real-world
noise, then statistically analyze the conversion failures.
We define three noise types based on the statistics.

• We investigate three controlled noise introducing meth-
ods to synthesis our training data, which are proven to
be effective in the experiments.

• We integrate and investigate the contextural information
with the Transformer G2P, and propose a robust training
strategy to mitigate the effect of noise during training.

2. REAL-WORLD NOISE EFFECT

In this Section, we study the effect of real-world noise on the
baseline performance. The goals of this section are: (i) evalu-
ating the robustness of the baseline acrossmultimodal sources,
(ii) statistically analyzing the noise distributions, and (iii) pro-
viding statistics to craft a noisy training dataset. We analyze
the noise in three aspects. First, there are three major sources
for G2P, including direct texts (e.g. web-crawled news), raw
transcriptions from ASR, and recognitions from optical char-
acter recognition (OCR) systems. We adopt News Crawl [9],
TED Talks [10] and ICDAR Post-OCR text correction [11]
official dev sets as representative data which contain machine-
generated noisy texts. Second, to detail into phonetic analyses,
we group graphemes intoVowels andConstants. Third, there
are three orthographical noise types in each group: Insertion,
Deletion, and Substitution. Overall, we classify the reasons
for G2P conversion failures (measured in word error rate) into
4 types, as shown in Fig. 1. The average increased WER
caused by 3 noise types are +4.6% for vowel noise, +4.9% for
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Fig. 1. Conversion failures on multimodal sources. Base
denotes that the text is correct but wrongly converted by the
baseline. Other failures are caused by the noise, including
vowel noise (in blue), constant noise (in pink) and substitutions
of vowels and constants (in yellow). Take the vowel noise for
example, V-Vmeans that the failure is caused by a vowel being
substituted by another vowel ("than" -> "then"). V-_ means
there’s a vowel deletion noise ("neighbour" -> "neighbor")
while _-V means a vowel insertion noise ("lose" -> "loose").

constant noise, and +2.6% for substitutions of constants and
vowels. Conversion failures caused by the noise account for
almost 1 / 4 of all failures. This shows a great improvement
space for G2P models to tackle real-world noise.

3. APPROACH

When converting a noisy word, G2P models would fail eas-
ily because the noisy grapheme pattern is not observed fre-
quently enough in the training data. Further, other neighboring
graphemes would be affected by this "less jointly trained" un-
expected noise. We refer this phenomenon as "noise propaga-
tion". To address these problems, we first explore introducing
carefully crafted noise in the training data, then regularize the
effects of noise by the contextual information incorporation.

3.1. Controlled noise introducing

Ideally, we would train a G2P model on parallel data with
noisy inputs. Since no such data exists, we propose three
controlled noise introducing methods. For nat and syn, each
word is modified with the probability of 𝑝.
Orthographical natural noise introduction: nat We first
explore introducing with weak noise, i.e., the natural noise.
Natural noise denotes that the noisy word has similar pronun-
ciations with the correct one but is orthographically different.
We adopt the Wikipedia dataset [12] to replace correct words
with their misspelled versions. It is considered weak because
it may occur when one is not sure about the spelling form but
aware of the pronunciation, so this type of noise wouldn’t lead
to big changes in the G2P conversion.
Phonological noise synthesis: syn Uncareful noise synthe-
ses would easily lead to high-complexity and non-convergence
for neural models. So, we synthesis noisy examples basing
on the phonology knowledge and noise distributions. First,
as shown in Fig. 2, graphemes could be phonologically cate-
gorized into sound units. These units can further parse into
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Fig. 2. The illustration of a synthetic noise example.

phonetic structures, i.e., syllables. In practice, we obtain syl-
lables using Consonant Cluster-Vowel approach [13]. Second,
we limit the modifying position within the syllable boundary.
This would help to constrain the "noise propagation" within
the syllable boundary as well. Third, we sample and apply
one of the 3 noise types in Sec. 2 to introduce with. The sam-
pling probability is based on the collected noise distributions
in Sec. 2. This 3-step noise synthesis process aims to mimic
the real-world data, thus provides a realistic noisy dataset.
Gradient-based adversarial perturbation: adv The adver-
sarial perturbation strategy has been applied to text classifica-
tion [14] to improve robustness. Motivated by this strategy, we
investigate adding the adversarial perturbation to the grapheme
embedding. Let 𝑥, 𝑦 ∈ R𝑑×1 denote the grapheme embedding
and phoneme embedding, respectively. 𝜃 and 𝜃 are the last
and current iteration model parameters. During every training
iteration, the worst case perturbation 𝛿𝑎𝑝 is added:

𝛿𝑎𝑝 = argmin
| |𝛿 | | ≤𝜖

log 𝑃 (𝑦 | 𝑥 + 𝛿; 𝜃) , (1)

where 𝜖 is a hyper-parameter to control the magnitude of per-
turbation. Actually, it is intractable to calculate the minimum
of objective function as shown in Eq. 1. In paractice, 𝛿𝑎𝑝 is
approximated via the gradient of objective function:

𝛿𝑎𝑝 = −𝜖𝑔𝑥/| |𝑔𝑥 | |2, where 𝑔𝑥 = ∇𝑥 log 𝑃
(
𝑦 | 𝑥; 𝜃

)
(2)

where 𝑔𝑥 denotes the gradient. The adversarial perturbation
is actually a strong regularizer in the high-dimensional space,
which substantially increases the diversity of inputs.

3.2. Incorporating contextual information

We incorporate the contextual information to denoise and mit-
igate the "noise propagation" problem. To create context 𝐶𝑘

for 𝑘-th word 𝑥𝑘 , we simply choose 𝑙 words both left and right.
As shown in Fig. 3, we use a convolution layer to compute the
context representation. The convolution layer aims to traverse
the context embedding in turn, thus extracts feature vectors.
We integrate 𝐶𝑘 into both the encoder and decoder of the

original Transformer. In the encoder, let 𝐴𝑘 be the output of
the self-attention. The second sublayer integrates the context:

𝑀𝑘 = MultiHead (𝐴𝑘 , 𝐶𝑘 , 𝐶𝑘 ) . (3)

In the decoder, let 𝐵𝑘 be the output of the first sublayer. Similar
to the encoder, the second sublayer is the context attention:
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Fig. 3. Our extended Transformer G2P model which exploits
the contextual information. The original structure is in blue,
newly introduced modules are highlighted in yellow.

𝑁𝑘 = MultiHead (𝐵𝑘 , 𝐶𝑘 , 𝐶𝑘 ) . (4)
We use a gatingmethod to regulate the contextual information:

Gating(𝐶𝑘 ) = 𝜆𝐶𝑘 + (𝐼 − 𝜆)𝑁𝑘 , (5)
where 𝐼 being a unit vector, 𝜆 is the gating vector given by:

𝜆 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 (𝑊𝑖𝐶𝑘 +𝑊𝑠𝑁𝑘 ) , (6)
where 𝑊𝑖 and 𝑊𝑠 are trainable parameters. 𝜆 represents the
learned gates applied to dimensions of𝐶𝑘 to weight the impor-
tance. The target phoneme 𝑦𝑘 is predicted using the softmax:

𝑃 (𝑦𝑘 | 𝑥𝑘 , 𝐶𝑘 ; 𝜃) ∝ exp (𝑊𝑜 × 𝑇𝑘 ) , (7)

where𝑊𝑜 ∈ R|V𝑦 |×𝑑 is a model parameter,V𝑦 is the phoneme
vocabulary. 𝑇𝑘 ∈ R𝑑×1 is a column vector for predicting 𝑦𝑘 .
The context may provide auxiliary information (e.g., part-of-
speech, word category, word frequency) for the noisy words,
thus is helping to "correct" the noise in the latent space.

3.3. Robust training

Joint training the contextual information may increase the in-
fluence in an uncontrolled way. To avoid this, we propose a
two-step training strategy that uses a clean word-level corpus
𝐷𝑤 along with the noisy sentence-level corpus 𝐷𝑠 . We divide
model parameters into two subsets: 𝜃𝑤 (highlighted in blue
in Fig. 3) and 𝜃𝑠 is newly-introduced (in yellow). In the first
step, 𝜃𝑤 are optimized on the combined corpus 𝐷𝑤 ∪ 𝐷𝑠:

𝜃𝑤 = argmax
𝜃𝑤

∑︁
〈𝑥,𝑦〉∈𝐷𝑤∪𝐷𝑠

log 𝑃 (𝑦 | 𝑥; 𝜃𝑤 ) . (8)

In the second step, 𝜃𝑠 are optimized on the 𝐷𝑠 only:

𝜃𝑠 = argmax
𝜃𝑠

∑︁
〈𝑋,𝑌 〉∈𝐷𝑠

log 𝑃
(
𝑦 | 𝑥; 𝜃𝑤 , 𝜃𝑠

)
. (9)

This is similar to the pre-training. The major difference is that
ours fixes 𝜃𝑤 when optimizing 𝜃𝑠 to prevent overfitting to the
noisy 𝐷𝑠 and stablize the training by the way.

4. EXPERIMENTS AND RESULTS

4.1. Data Preparations and Model Details

The CMUdict 0.7b [15] are adopted as 𝐷𝑤 . 𝐷𝑠 comes from
CCOHA [16], which is clean and of large diversity in words.
The test sets are two aspects: (1)Two dictionary-based bench-
marks: CMUdict andNetTalk [17]; (2)Three real-world noisy
sets, which are same in Sec. 2. We extract the noisy-corrected
text pairs, and convert the corrected texts into ground-truth
phonemes. The transformer has 4 encoder-decoder layers and
4 attention heads. The embedding size is 128 for graphemes
and phonemes, 512 for word embeddings in the context. Dur-
ing inference, the beam search is used with size of 4.

4.2. Main results

Through all hyperparameters tried, we report the best results
in Table 1. On the dict-based clean test sets, our models all
outperform the baseline. adv achieves the most improvement
of -2.25 % WER on CMUdict and -3.21 % WER on NetTalk.
This proves ourmethod can improve the robustness in the clean
scenario. Previous methods performwell on the clean data but
suffer from a great performance drop on noisy testsets. r-G2P
significantly outperforms in noisy scenarios. syn obtains the
best performance of -9.09%WERcomparedwith the baseline.
We also compare with first correcting noisy texts byMicrosoft
Bing Spell Check [18], then converting by the baseline. Ours
conversion accuracy is also higher. Considering the cost to
integrate a spell corrector before G2Pmodels, ours is a unified
model which is more efficient and accurate.

4.3. Effect of noise ratio

We setup noise ratio 𝑝 in the whole sentence-level corpus.
Fig. 4 shows the effect of 𝑝. It is clear that introducing noise
indeed enhances performance on not only the real-world noisy
data but also the dict-based clean data. A moderate amount
of noise would enhance the robustness, while the moderate
amounts are not fixed for each dataset depending on the noise
distributions. The noisy sets obviously adjust to a higher noise
ratio, which is too high for clean sets. This also indicates that
the different noise introducingmethods have different impacts.
With the same 𝑝, syn makes a stronger impact than nat.

(a) nat (b) syn

Fig. 4. Varying noise ratio 𝑝 results in model performances.



Table 1. Comparisons on various test sets. Numbers form in PER (%) / WER (%). Note that [19] has no official code.
Method Dict-based Benchmarks Real-world Sources

CMUdict NetTalk News Crawl TED Talks ICDAR

Encoder CNN, decoder Bi-LSTM (fifth model) [19] 4.81 / 25.13 5.69 / 30.10 — — —
CNN with NSGD [20] 5.58 / 24.10 6.78 / 28.45 12.43 / 43.82 15.12 / 45.96 19.36 / 49.05

Encoder-decoder + global attn [21] 5.04 / 21.69 7.14 / 29.20 16.17 / 44.57 16.34 / 47.20 18.28 / 45.43

Transformer 4x4 5.23 / 22.10 6.87 / 29.82 11.10 / 42.83 15.90 / 44.56 16.01 / 42.06
Bing + Transformer 4x4 — — 8.78 / 32.61 10.29 / 36.94 12.15 / 37.52

r-G2P (nat) 5.22 / 20.14 6.64 / 28.85 9.94 / 33.45 8.16 / 36.25 11.58 / 36.94
r-G2P (syn) 5.09 / 21.67 6.68 / 29.13 8.61 / 32.76 8.64 / 35.06 10.39 / 34.35
r-G2P (adv) 4.84 / 19.85 5.34 / 26.61 10.31 / 36.53 9.65 / 40.72 13.46 / 39.42

4.4. Effect of context length

We investigate the effect of context length and report the aver-
ageWER here. 𝑝 = 0.2 are set as a stationary point. As shown
in Table 2, incorporating the contextual information greatly
enhances the anti-noise capability. Setting 𝑙 = 1 or 𝑙 = 2 as
sentence-level context achieves the best performance. Using
more words does not bring further improvement and increases
computational cost. It’s worth noticing that incorporating the
contextual information has almost no contribution to adv. We
assume that this kind of low-level feature is not helpful for
perturbations in the high-dimensional hidden space. Results
prove that the contextual information and robust training can
cooperate with each other to improve the performance further.

Table 2. Context length 𝑙 results in WER (%). Ro. denotes
the robust training. 𝑙 = 0 means no context integrated.

Ro. 𝑙 = 0 𝑙 = 1 𝑙 = 2 𝑙 = 3

r-G2P (nat) – 41.29 38.74 37.08 36.61
X 40.37 35.37 35.52 35.46

r-G2P (syn) – 40.46 39.54 36.42 36.03
X 39.64 36.78 35.09 35.28

r-G2P (adv) – 40.15 41.23 40.98 41.39
X 38.23 38.51 38.14 38.38

4.5. Case study

Addressing out-of-vocabulary (OOV) words (i.e., abbrevia-
tions, foreign names) is a major goal for G2P models. We
extract some realistic examples from Wiktionary in Table 3.
Compared with the baseline, ours can generate more accurate
predictions. On the other hand, CMUdict is crafted manually
and updated consistently, hence prone to annotation errors.
Themisspelled word "commerical" is annotated with the same
label as "commercial". Even for this non-existent word, ours
outputs quite a convincing pronunciation.

Table 3. Examples converted by the baseline Transformer and
ours. GT denotes the ground truth, where red being wrong.

Name Abbr. Compound Wrong GT
Word Xochitl ASAP coathanger commerical honest

GT So:tSitl eısæp koUt hæŋ3 k@m3:S@l A:n@st
Trans zA:k@t@l eıEseıpi: koUTæg3 k@m3:S@l A:n@st
r-G2P ko:tSitl eısæp koUt hæŋ3 k@m3:rık@l Anıst

Another issue is the homograph disambiguation, where a
word pronounced differently depending on the context. For
example, "analyses" is both the third-person singular form
of "analyse" ( [æn@lAızız] ) and the plural of "analysis" (
[@nælısi:z] ). We extract the encoder-decoder attention map
and visualize it in Fig. 5. Ours took advantage of the contextual
information, which mainly focused on the hard-to-distinguish
phonemes, and converted this word correctly.
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Fig. 5. Visualizations of G-P alignments and the gating
𝜆. Darker color means greater alignment weights and gated
scales. The context is " ... some chemical analyses of the ... ".

5. CONCLUSION

In this paper, we mainly raise the issue of G2Pmodel’s robust-
ness on the noisy words since it has never been explored. We
first confirm its vulnerability and statistically analyze the con-
version failures caused by the noise. Then, we propose three
controlled noise introducing methods to the training data. By
incorporating the contextual information and the robust train-
ing process, we substantially mitigate the noise effect and
achieve a robust G2P model. Experimental results show that
the r-G2P significantly outperforms previous methods both on
the dict-based benchmarks and in real-world scenarios.
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