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ABSTRACT

JPEG compression is widely used to store digital images and
extensive studies analysed its impact on the image quality;
in particular the quantization noise and artefacts created by
JPEG. Nevertheless, there is little work on the impact of JPEG
compression on the noise already present in the image. In this
paper, we propose a model predicting how the noise power is
affected by JPEG compression. This allows for a better un-
derstanding the noise traces on the image, which is crucial for
image forensic analysis and image restoration. An interactive
demo for this article is available at
https://ipolcore.ipol.im/demo/clientApp/demo.html?id=77777000136

Index Terms— JPEG compression, camera noise, noise
estimation, DCT analysis, quantization

1. INTRODUCTION

From the moment a raw image is acquired until the final JPEG
picture is obtained, a complex processing chain is applied.
Each of these operations alters the noise model. Indeed, the
initial Poisson-Gaussian noise [1] undergoes several opera-
tions resulting in a complex noise model. The final stage in
most digital images consists in JPEG compression. Indeed, to
be stored or transferred in a reasonable amount of time, im-
ages must undergo a compression step. Many noise estima-
tion algorithms [2]-[5] suppose that noise can be estimated
using only the high frequency coefficients of small patches
in an image. However, this is not true for JPEG-compressed
images, since the quantization step during the compression
process attenuates these high frequencies. Indeed, for JPEG
images, noise variance decreases as the frequency increases.
As a result, these noise estimation methods yield to an inac-
curate estimation of the noise. Noise estimation is a manda-
tory step of countless image processing tasks such as denois-
ing [6], [7], forgery detection [8], [9], anomaly detection [10],
PRNU extraction [11] and steganography [12], just to men-
tion a few. The performance achieved by the methods devel-
oped to tackle each of these tasks depend on how accurately
they are able to estimate noise.
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Fig. 1: Simplified processing pipeline of an image, from its
acquisition by the camera sensor to its storage as a JPEG-
compressed image. The right column plots the noise of the
image as a function of intensity in all three channels.

The aim of this article is to provide a characterisation of
the resulting noise after JPEG compression. Such a model
could help accurately estimate noise, boosting the perfor-
mance of a huge variety of image processing tasks that require
noise estimation as one of their fundamental steps.

2. RELATED WORK

After JPEG compression, there are two kinds of noise in the
image: the original noise, that was there before compression
and was compressed with the rest of the image, and the noise
coming from the JPEG compression itself. There is conse-
quent literature on estimating the noise that directly comes
from compression itself [13]-[15]. Due to the lossy nature of
JPEQG, it affects tasks in various domains. In image forensics,
subtle traces such as demosaicing artefacts are much harder to
analyse when the image is compressed [ 16]. Mandelli, Bonet-
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Fig. 2: Gaussian noise is added to the dice image before compression. An estimation of the remaining noise is obtained by
computing the difference between the noisy and noiseless images, both after compression. This enables us to estimate specifi-
cally the effect of the compression on existing noise, while ignoring most of the noise coming directly from the compression. As
per our model, a low noise level is diminished even more by the compression, whereas a higher noise level is instead augmented.
Compression is done with the Pillow library at a quality factor of 85.

tini, Bestagini, et al. [17] analyses the effects of JPEG com-
pression on different camera traces and shows that care must
be taken from the training data to ensure some robustness to
compression. Image classification, especially when done at
full resolution, is also affected by compression [18].

In comparison, analysis of how the compression affects
already-present noise has received little attention. We propose
to study in details how JPEG compression affects noise that
was present prior to the compression. Indeed, noise is present
in an image from the sensing of the real scene. Each step in
the pipeline, including JPEG compression, alters the already-
existing noise in some way, while often adding its own noise
on top of it. See [19] for a general overview of the impact of
each processing step on the noise. Jiang, Zeng, Kang, et al.
[20] notice that counter-forensics techniques, aimed at hid-
ing JPEG compression, usually introduce inconsistent noise
in the image. Noise-level analysis is applied to distinguish
authentic regions from region with hidden traces of a previous
compression. Corchs, Gasparini, and Schettini [2 1] study the
influence of images distortions, in particular Gaussian noise
and JPEG compression, on the overall image quality. While
this study combines Gaussian noise that is subjected to further
JPEG compression, they do not directly study the influence
JPEG compression had on the noise, but rather the combined
effect both had on the end image’s quality.

3. NOISE THROUGHOUT THE CHAIN

Along the image formation pipeline of a camera, the raw data
from the sensor undergoes a series of operations: demosaic-
ing, white balance, gamma correction, compression, to men-
tion a few [22]. We will now discuss the way in which noise
is affected at each step of the camera processing chain.

In order to acquire a raw image, the first step is to count
the number of photons impacting over the CFA during the ex-

posure time. This is done by transforming the incoming light
photons into electronic charge, which is stored in a potential
well and then turned into analog voltage outputs. The final
step consists in the conversion of the analog voltage measures
into digital quantized values. The value at each pixel at this
stage can be modelled as a Poisson variable whose expecta-
tion is the real pixel value. Furthermore, all channels have the
same noise curve. Since noise is Poisson distributed, noise
variance follows a simple linear relation as shown in Figure 1.

The raw image obtained from the CFA has one colour
component per pixel, red, green, or blue. The demosaicing
process consists in the reconstruction of a full colour image
which is done by interpolating the two missing colour values
per pixel. Figure | shows that, after demosaicing, each chan-
nel has a different noise curve. This is due to the fact that
channels are processed differently by the demosaicing algo-
rithm. After this, noise is spatially correlated.

The third step consists in performing colour correction so
that the observed colours are true to the real scene. This is
done by scaling the colour channels so that true gray objects
are rendered as such in the final image. The pixels’ values
are then tuned to accurately represent human vision, which is
not linear with the signal intensity [23]. This is usually done
by applying a power law function or by using pre-computed
curves to fit the visual system. At this point, the noise is no
longer monotonically increasing.

The final step for most digital images is JPEG compres-
sion. The colour space is switched from RGB to Y CgCp.
The chroma components Cp and Cr are usually downsam-
pled. Each channel is then split into 8 x 8 blocks and the
2D DCT 1I of each block is computed. The resulting blocks
are then quantized according to a quantization table, which is
associated with the JPEG global quality and provides a dif-
ferent factor ¢ for each component of the DCT blocks. It is
during this quantization step that the greatest loss of informa-
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tion occurs, but it is also this step that allows the most space in
memory to be saved. The coefficients that correspond to the
high frequencies, whose variations the human visual system
struggles to distinguish, are the most quantized, sometimes
even entirely cancelled. After quantization, a lossless com-
pression (Huffman encoding) is applied in order to store the
resulting DCT values. This process is explained for the lumi-
nance channel in the next section.

4. JPEG COMPRESSION ON GAUSSIAN NOISE

Although the noise present in an image before JPEG com-
pression is not Gaussian, the Poisson distribution of noise de-
rived from the photon count can be approximated by a Gaus-
sian distribution. However, this Gaussian distribution would
still be intensity dependent. In order to transform this sig-
nal dependent noise into homoscedastic, a variance stabilizing
transformation can be applied [24]. This procedure allows us
to work with the popular white Gaussian noise assumption
used in many noise estimation and denoising algorithms.

Let n be the spatially-independent zero-mean Gaussian
noise existing in an image before JPEG compression. We
note by @ £ u + n the noisy observation in pixels, were u
is the ideal noiseless image. Here we focus on the luminance
colour space which is not downsampled and thus preserves
more image details. Excluding the effect of lossless compres-
sion (QF = 100), the impact of lossy JPEG compression can
be modelled as follows:

Consider an 8x8 block, the first operation consists in
performing the DCT transformation of the block. Then, the
DCT coefficients are converted into integers with division
by a quantization table, followed by rounding. During the
decoding stage, the multiplication by the quantization table is
performed, followed by the inverse DCT (IDCT). The whole
JPEG encoding-decoding process can be expressed as:

@ =IDCToQuantoDCT (a) = AT [Aﬂ@%] ©®¢, where
A € O(64,R) is the orthogonal matrix of DCT, [-] represents
the rounding operation, ¢ € Rg‘l is the quantization table and
© denotes the element-wise multiplication.

Since n is Gaussian, the noisy observation « is in fact a
Gaussian vector. Furthermore, if we assume that for all the
pixels in a patch, the noise level is constant and equal to o
then @ ~ N (u,X3), with ¥z = o21.

The DCT is an orthogonal transformation and, therefore,
x £ DCT (i) ~ N (Au, %) where 3, = ¥, = 021.

The input of [-] in the pipeline, noted as z £ x ® _ is still
a Gaussian vector: z ~ N (p, X,) with g, = Au® 1/q and
3. =diag (6?/4},...,0%/q,).

However, the impact of the rounding operation [], d
scribed in detail in [25], is not linear. The rounded z is 2’
[2] has expected value for each entry
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Compared to textured patches, evaluating noise on flat
patches is easier since the signal is uniform and the vari-
ation only contains noise. Thus we focus on the study of
@ <+ @ — mean (@) for the pre-compression image and @’ <+
@' — mean (@') for the post-compression image. Then we
get @ ~ N (0,6%I) and x ~ N (0,0%I). The input of
Quant (+) is z ~ N (0,diag (62/qi,...,0%/q3,)) which
has zero mean. The rounded zero-mean Gaussian variable
has a zero expectation E [z]] = E [z;] = 0 according to Eq. 1,
and its variance is
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Finally, the variation after compression @ = AIiz’ X q; sat-

isfies E (@;) = 0. If we define 032 £ Var (i), we get
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In particular, if the quantization table satisfies g; = ¢ Vi then,

64
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which is independent of the pixel index j. We get the relation

between the standard deviation o of the original noise and ¢’
that of the quantized noise:
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5. EXPERIMENTS

To validate the model derived in Section 4 we conducted
several experiments on both synthetic noise images and real
noiseless images to which we added noise. The Noise-Free
Test Images dataset [26] contains 16 high-qualities images
that were carefully downsampled to remove traces of previ-
ous noise, allowing us to control the amount of noise to add
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Fig. 4: Noise residual standard deviation for each DCT co-
efficient, for quality factors QF = 10, 50,90 and for a fixed
pre-compression noise ¢ = 10. The top row corresponds
to synthetic Gaussian noise (constructed by taking the noise-
less uncompressed image as a completely flat image) and the
bottom row to an image from the NFTI dataset with added
noise [26].

to the image. To compute the ground truth noise residuals we
first select an uncompressed noiseless image (flat or from the
dataset). Given a quality factor QF and a noise level o, the
noiseless uncompressed image is processed in two different
ways. The first one consists in adding white noise of variance
o2 to the uncompressed noiseless image and then compress-
ing it with quality factor QF. The second consists only in
performing the compression step, without adding noise. The
ground truth noise residual is computed as the difference
between the noisy compressed image and the noiseless com-
pressed image. This computation is summarised in Figure 3.

Figure 4 shows the standard deviation of the noise residual
for each 8 x 8 DCT coefficient and for different compression
qualities, and for a fixed pre-compression noise level equal to
10. The noise’s standard deviation decreases as the frequency
increases, as suggested by our model. However, this effect
is not homogeneous across different JPEG qualities, we can
notice that the lower the JPEG quality, the more notorious
this effect becomes. It is also remarkable that lowering the
JPEG quality more strongly damages the high frequencies of
noise, while keeping the low ones mostly unchanged. Fur-
thermore, for a compression quality QF = 90 we observe
that the effects of compression are pretty innocuous as the
noise standard deviation is still mostly homogeneous across
frequencies.

Figure 5 shows the standard deviation of the noise af-
ter JPEG compression divided by ¢ as a function of the pre-
compression noise divided by ¢, for different input images
and quantization factors ¢ = 8, 64. We observe that for very
small values of noise, the output noise is bigger than the input
noise on real images. Although the theory suggests output
noises should be smaller in this range of values, the experi-
mental results are disturbed by JPEG noise. This JPEG noise
is negligible when compared to higher noise levels but be-
comes predominant when the noise levels are very low. For
medium noise levels we observe, as suggested by our model,
that output noises are smaller than input noises. This is due
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Fig. 5: Ratio of the post-compression noise standard devia-
tion and quality factor %’ as function of the same ratio before
compression, with o € [1,20] and ¢ = 8(left), ¢ = 64 (right).
The model curve corresponds to Eq. 5 and highly coincides
with the pure noise curve.

to the effect of quantization since it removes the small varia-
tions in pixel’s values for which noise is responsible. As the
noise grows, we observe that the curves converge to the iden-
tity when ¢ is low enough, as predicted by the model on pure
noise. This is explained by the fact that, for big enough noise
levels, the quantization factor becomes negligible with respect
to the noise level. However, with a larger value of ¢, the noise
seems dimmed by compression, deviating from the theoreti-
cal model. In practice, this is only caused by clipping; indeed
toreach a Z ratio of 1 when g = 64, the noise’s standard devi-
ation must also reach 64. More pixels thus become saturated
when noise is applied, thus lowering the noise level before
even compression. When comparing the output noise to the
post-clipping, pre-compression noise, we fall back to a curve
similar to the ¢ = 8 case. Although the two curves are simi-
lar, a given noise level will have a lower Z ratio if ¢ is high,
and the noise will be more affected. Since high-frequencies
components are often attributed higher quantization factors,
their noise is thus reduced more.

On the other hand, we observe that textured images, such
as traffic, show bigger deviations from the theoretical model
than non-textured images or even pure synthetic noise. This
phenomenon can be explained by the fact that in textured im-
ages high frequencies are not only affected by noise but also
by texture. Even though our method removes most of the
quantization noise, some remain in the residual, and is more
prominent when the noise level is comparatively lower.

6. DISCUSSION

In this article, we derived a model for the effect of JPEG com-
pression on prior noise. Both the theoretical and experimental
results show that post-quantization, prior noise is frequency-
dependent. In particular, previously-normal noise only re-
mains normal separately for each DCT coefficient. We believe
the applications for our study to be numerous and varied,
in particular whenever precise knowledge of the noise of an
image is required, such as restoration of bad quality (com-
pressed) images, steganography, and image forensics. Our



work focused on the luminance channel. Future work will
extend this model to the chroma components, which are sub-
sampled in addition to the quantization we studied here.
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