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ABSTRACT

The goal of spoken language understanding (SLU) systems is to
determine the meaning of the input speech signal, unlike speech
recognition which aims to produce verbatim transcripts. Advances
in end-to-end (E2E) speech modeling have made it possible to train
solely on semantic entities, which are far cheaper to collect than
verbatim transcripts. We focus on this set prediction problem, where
entity order is unspecified. Using two classes of E2E models, RNN
transducers and attention based encoder-decoders, we show that these
models work best when the training entity sequence is arranged in
spoken order. To improve E2E SLU models when entity spoken
order is unknown, we propose a novel data augmentation technique
along with an implicit attention based alignment method to infer the
spoken order. F1 scores significantly increased by more than 11%
for RNN-T and about 2% for attention based encoder-decoder SLU
models, outperforming previously reported results.

Index Terms— spoken language understanding, encoder-
decoder, attention, speech recognition, ATIS

1. INTRODUCTION

SLU systems have traditionally been a cascade of an automatic speech
recognition (ASR) system converting speech into text followed by
a natural language understanding (NLU) system that interprets the
meaning of the text [1–4]. In contrast, an end-to-end (E2E) SLU
system [5–14] processes speech input directly into meaning without
going through an intermediate text transcript.

End-to-end sequence-to-sequence models can flexibly be trained
on different types of ground truth. For ASR, the training data is
speech with verbatim transcripts, shown as example (0) below. To
train an SLU model, sentences need to be annotated with entity labels
plus a label representing the intent of the entire utterance, as shown
in (1). In (2), entities are presented in natural spoken order, but words
not belonging to entities are excluded. SLU can be considered a set
prediction task, as the meaning depends only on the set of semantic
entities, not the order in which they were spoken. (3) represents a
condition where the spoken order of the entities is unknown, so their
order is standardized via lexicographic sorting on label names (e.g.
stoploc.city name).

0. Transcript: i want a flight to dallas from reno that makes a stop
in las vegas

1. Transcript+entity labels: i want a flight to DALLAS
B-toloc.city name from RENO B-fromloc.city name that makes
a stop in LAS B-stoploc.city name VEGAS I-stoploc.city name
INTENT-flight

*Work done while at IBM. Currently at AppTek.

Fig. 1. Training E2E SLU models when entity spoken order is un-
known via data augmentation and entity reordering.

2. Entities in natural spoken order: DALLAS B-toloc.city name
RENO B-fromloc.city name LAS B-stoploc.city name VEGAS
I-stoploc.city name INTENT-flight

3. Entities in alphabetic order: RENO B-fromloc.city name
LAS B-stoploc.city name VEGAS I-stoploc.city name DALLAS
B-toloc.city name INTENT-flight

In this paper we focus on training SLU models on ground truth that
is a set of semantic entities with unknown spoken order. This type
of data cannot be used to train classical ASR or NLU models, yet it
may be abundant and much less costly to collect. Imagine recording
a human agent talking with a client to make a travel reservation,
along with the actions performed by the agent, e.g. filling out web
forms or other database transaction records which can be translated
into semantic entities. Alternatively, such data may be collected
automatically by spoken conversational systems over multiple turns of
dialogue through implicit or explicit confirmation of entities. To train
ASR and NLU separately, accurate verbatim transcription of speech
data requires 5-10× real-time for a human transcriber, plus additional
costs for labeling entities. In contrast, automatic collection of speech
with an associated set of important entities may be performed in the
course of helping the customer and incurs no additional cost. Training
on such data is an important research problem, but is also difficult.

An important class of E2E models being deployed in many com-
mercial speech services with streaming capabilities is RNN Trans-
ducer (RNN-T) models. Prior work shows RNN-T based SLU can
be trained with ground truth containing entities in spoken order, but
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when the spoken order is unknown, the performance suffers more
than 10% absolute drop in F1 score [15]. Attention based encoder-
decoder models do better, but F1 still decreases by more than 2%
when spoken order is unknown [16].

In this paper, as shown in Figure 1, we propose two methods to
address this problem: (1) a novel data augmentation scheme using
randomly ordered semantic entities for SLU, and (2) a novel method
to align semantic entities to speech and infer the spoken order by us-
ing the attention values from an attention-based encoder-decoder SLU
model. With our proposed techniques, we show how RNN-T based
SLU models can be effectively trained. F1 scores are significantly
increased by more than 11% for RNN-T and about 2% for atten-
tion based encoder-decoder SLU models, outperforming previously
published state-of-the-art results.

2. E2E MODELS FOR SLU

End-to-end models directly map a sequence of acoustic features to a
sequence of symbols without conditional independence assumptions.
We adapt these popular ASR models for SLU.

2.1. RNN Transducer model

RNN-T introduces a special BLANK symbol and lattice structure to
align input and output sequences. The models typically consist of
three different sub-networks: a transcription network, a prediction
network, and a joint network [17]. The transcription network pro-
duces acoustic embeddings, while the prediction network resembles
a language model in that it is conditioned on previous non-BLANK
symbols produced by the model. The joint network combines the
two embedding outputs to produce a posterior distribution over the
output symbols including BLANK. An RNN-T based SLU model
is created in two steps: by constructing an ASR model [18–22] and
then adapting it to an SLU model through transfer learning [15]. In
the first step, the model is pre-trained on large amounts of general
purpose ASR data to allow the model to effectively learn how to
transcribe speech into text. Given that the targets in the pre-training
step are only graphemic/phonetic tokens, prior to the model being
adapted using SLU data, it is extended to model the semantic labels.
These new SLU labels are integrated by resizing the output layer and
the embedding layer of the prediction network to include additional
symbols. The new network parameters are randomly initialized, while
the remaining parts are initialized from the pre-trained network. Once
the network has been modified, it is subsequently trained on SLU
data in steps similar to training an ASR model [23].

2.2. Attention based LSTM encoder-decoder model

This model estimates sequence posterior probabilities without in-
troducing any explicit hidden variables. The alignment problem is
handled internally by squashing the input stream dynamically with a
trainable attention mechanism synchronized to the output sequence.
The model is able to handle problems with non-monotonic alignment
exceptionally well, and has become the state-of-the-art approach in
many machine learning problems. The structures of an RNN-T and at-
tention encoder-decoder model are similar. The attention based model
also contains an LSTM based encoder network to generate acoustic
embeddings. The single-head LSTM decoder contains a language
model like component, and the attention module which combines the
acoustic embeddings and the embeddings of the symbol sequence
into a context vector to predict the next symbol. The adaptation of

attention based encoder-decoder ASR models [24] to SLU [16] can
be carried out using the same steps as described for RNN-T.

2.3. Attention based Conformer encoder-decoder model

For the model described in the previous section, only the decoder
contains an attention mechanism. We also consider adding attention
to the encoder. A conformer is a combination of convolutional neural
network and self-attention based transformer which has been shown
to achieve state-of-the-art speech recognition results [25]. We inves-
tigate an attention model where the encoder is a conformer, which
in a recent study [26] achieved a slight improvement over an LSTM
based encoder for the Switchboard 300h ASR task. The study found
no benefit in replacing the decoder with a conformer, so we do not
change the single-head LSTM decoder for our attention model.

3. SET BASED DATA AUGMENTATION

For the set prediction problem, we are provided with a set of entities
without knowing the spoken order. To train our sequence-to-sequence
model, we had arbitrarily chosen to standardize the entity order by
alphabetic sorting. To improve robustness, we propose data augmen-
tation that randomizes the order of the entities in the ground truth
that is used to pre-train various E2E models. During this pre-training
phase, the model is presented with a different version of ground truth
at each epoch. This is followed by a fine-tuning phase where the
model is trained on ground truth with entities in alphabetic order.
Exposing the model in the pre-training phase to many examples with
entity order mismatch between ground truth and speech may help it
to learn better during fine-tuning.

4. REORDERING SETS INTO SPOKEN ORDER

4.1. Explicit keyword search based alignment

In our first method to find the underlying spoken order of the set of
entities, we employ a simple procedure similar to keyword spotting.
In acoustic keyword spotting, a combination of two kinds of acoustic
models is used. While the keyword being searched for is modeled
by its underlying phonetic string, all non-keyword speech is modeled
by a garbage model. Using a conventional hybrid ASR model, we
construct a model for the keyword being searched as a concatenation
of the hidden Markov models (HMMs) corresponding to the con-
stituent phones in the keyword. The garbage model is represented
by a generic phone for vocal speech. We then concatenate these
models: first the garbage model, then the keyword model, and finally
the garbage model again, and then force-align the utterance to the
keyword model using the hybrid ASR model.

4.2. Implicit internal alignment using attention

As has been observed in [16], an attention model can handle SLU
entities in non-spoken order, and a single-head attention can have an
especially sharp focus for spoken tokens at the corresponding time-
position in the acoustic feature stream. Based on this observation,
the spoken order of SLU phrases can be estimated. The following
heuristic estimates an average time position for each SLU phrase
when the spoken order of the phrases is unknown:

ti =
1

|Ni|
∑
n∈Ni

argmax
t

αt,n (1)
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Fig. 2. Attention plot for “I would like to make a reservation for a
flight to Denver from Philadelphia on this coming Sunday” where
ground truth is entities in alphabetic order by label name

where αt,n denotes the attention for the nth output token at each
acoustic frame t. Let the ith SLU phrase, consisting of spoken BPE
(byte pair encoding) tokens [27] and entity labels, start at position
ni and end at ni+1 − 1 in the output sequence, and let Ni contain
only the positions of the BPE (spoken) tokens. Figure 2 shows an
example attention plot where the x-axis is time within the speech
signal (corresponding to t) and the y-axis contains the sequence
of BPE tokens and entity labels (corresponding to n, from top to
bottom), and the value of αt,n is represented by how dark the pixel
is. Considering only spoken tokens, Eq. 1 thus calculates an average
time-position for each SLU phrase, by which the spoken order of the
phrases can be reestablished.

This alignment method is better than using hybrid ASR because
the SLU model can first be adapted acoustically by training on SLU
data where the ground truth is a set of semantic entities with un-
known spoken order. Adapting the hybrid ASR on such data is not as
straightforward.

5. EXPERIMENTAL SETUP

5.1. Dataset

ATIS (Air Travel Information Systems) [28] is a publicly available
Linguistic Data Consortium (LDC) corpus that has been widely used
in SLU research. We use the same data preparation as [15, 16]. There
are 4976 training audio files (∼9.64 hours, 355 speakers) and 893 test
audio files (∼1.43 hours, 355 speakers) downsampled to 8 kHz. To
better train E2E models, additional copies of the corpus are created
using speed/tempo perturbation, resulting in ∼140 hours for training.
To simulate real-world operating conditions, we create a second noisy
ATIS corpus by adding street noise between 5-15 dB signal-to-noise
ratio (SNR) to the clean recordings. This∼9.64 hour noisy data set is
also extended via data augmentation to∼140 hours. A corresponding
noisy test set is also prepared by corrupting the original clean test set
with additive street noise at 5 dB SNR.

Intent recognition performance on this dataset is measured by
intent accuracy, while semantic entity recognition (slot filling) perfor-
mance is measured with the F1 score [16].

5.2. RNN-T SLU model

As described in [15], the RNN-T models we develop for SLU are
first pre-trained on task independent ASR data. In this paper we use
an ASR model trained on 300 hours of data from the Switchboard
corpus using the steps described in [23]. CTC acoustic models are
first trained and used to initialize the transcription network of the

RNN-T model [29, 30]. The RNN-T model used in our experiments
has a transcription network containing 6 bidirectional LSTM layers
with 640 cells per layer per direction. The prediction network is a
single unidirectional LSTM layer with 768 cells. The joint network
projects the 1280-dimensional stacked encoder vectors from the last
layer of the transcription net and the 768-dimensional prediction net
embedding each to 256 dimensions, combines them multiplicatively,
and applies a hyperbolic tangent. After this, the output is projected to
46 logits, corresponding to 45 characters plus BLANK, followed by
a softmax layer. In total, the model has 57M parameters. The models
were trained in PyTorch for 20 epochs [31]. More details of the
design choices can be found in [23]. As described earlier, during SLU
adaptation, new network parameters are randomly initialized while
the remaining parts of the network are copied from the pre-trained
network. For the ATIS entity/intent task we add 151 extra symbols
to the joint network output layer and the prediction network input
embeddings as entity/intent label targets.

5.3. Attention based LSTM encoder-decoder SLU model

Our attention based E2E model follows the structure of [24]. It has a
6-layer bidirectional LSTM encoder and 2-layer unidirectional LSTM
decoder, and models the posterior probability of about 600 BPE units
augmented with the entity and intent labels. All LSTM layers use
768 nodes per direction. The first LSTM of the decoder operates
only on the embedded predicted symbol sequence, while the second
LSTM processes acoustic and symbol information using a single-
head additive location-aware attention mechanism [32]. The dropout
and drop-connect rates are set to 0.3 in the encoder and to 0.15 in the
decoder. In addition zoneout with 0.10 probability is also applied in
the second LSTM layer of decoder [33]. Overall, the model contains
57M parameters. For ASR pretraining the standard Switchboard-300
corpus is used, and the model is optimized from random initialization
by AdamW in 450k update steps with a batch of 192 sequences [34].
The SLU fine-tuning is carried out with a batch of 16 sequences in
about 100k steps.

5.4. Attention based Conformer encoder-decoder SLU model

To add self attention to the encoder, we replace the LSTM encoder
with a Conformer encoder, following the structure of [26]. Everything
else is the same. Overall, the model contains 68M parameters.

6. RESULTS

Table 1 shows results with RNN-T models on the ATIS clean corpus
described in Section 5.1. Using the unadapted baseline ASR, the
WER is 14.0%. When full verbatim transcripts with semantic labels
are used to adapt the ASR model into an SLU model, we obtain the
results in [R1c]. [R2c] shows results when ground truth containing
only entities in natural spoken order are used for SLU model train-
ing. Compared with using full transcripts [R1c], we see hardly any
difference in F1 (93.3% vs. 93.0%), despite the fact that [R2c] has
an astonishing WER of 60.6%. The WER is so high because the
model does not output non-entity words that do not directly impact
the meaning representation. These results show that accurate SLU
models can be trained without full transcripts. During training of
[R3c] the ground truth entities are given without information about
the spoken order and are sorted alphabetically based on the name of
the entity label. Compared with [R2c], F1 suffers a huge degrada-
tion of 11.8% (from 93.0% to 81.2%). Although RNN-T models are
currently one of the most popular speech recognition models, such a



Table 1. ATIS WER and set-of-entities slot filling F1 score for speech
input using RNN-T models

Training Data WER F1

Clean speech
[R0c] Base ASR 14.0
[R1c] Full transcripts 1.4 93.3
[R2c] Entities, spoken order 60.6 93.0
[R3c] Entities, alphabetic order 73.1 81.2

Table 2. ATIS set-of-entities slot filling F1 score for speech input
using RNN-T [R], attention based encoder-decoder with LSTM [L]
encoder or Conformer [C] encoder

Training Data [R] [L] [C]

Clean speech
[1c] Full transcripts 93.3 94.4 94.3
[2c] Entities, spoken order 93.0 94.2 94.3
[3c] Entities, alphabetic order 81.2 92.0 92.7
[4c] Random order augmentation 79.4 92.7 93.1
[5c] Spoken order alignment-H 92.9 93.6 93.7
[6c] Spoken order alignment-A 92.8 93.4 93.8
[7c] + Random order augmentation 92.6 94.0 94.3
Noisy speech
[1n] Full transcripts 92.0 93.2 93.4
[2n] Entities, spoken order 90.8 92.2 93.2
[3n] Entities, alphabetic order 70.7 89.5 90.9
[4n] Random order augmentation 81.7 90.3 91.6
[5n] Spoken order alignment-H 89.1 90.8 91.5
[6n] Spoken order alignment-A 89.2 91.4 92.9
[7n] + Random order augmentation 89.5 92.0 93.0

transducer model does poorly when the ground truth sequence does
not correspond to the spoken sequence because it operates monotoni-
cally. The approach proposed in this paper addresses this issue.

Focusing on just entity recognition, Table 2 shows F1 score
results comparing the three E2E SLU models: RNN-T [R], attention
based encoder-decoder with LSTM [L] encoder or Conformer [C]
encoder. The F1 score is around 93-94%. Although not shown in the
table, the intent accuracy is around 96-97% for the attention models.
These results are comparable with or better than previously reported
results [1, 3, 4, 35] on ATIS for speech input. In our experiments, the
intent accuracy did not vary much with different types of training
transcripts (e.g. [1c], [2c], [3c]), so we do not report this metric in
the rest of the paper. In addition to the clean corpus, results are also
shown using the noisy corpus as described in Section 5.1.

With clean speech, F1 scores when trained on just entities in
spoken order [2c] are similar to those with full transcripts [1c]. When
the entity spoken order is unknown [3c], while RNN-T suffers a big
loss (12%) in F1, the attention based encoder decoder models do
relatively well, but F1 still decreases by about 2%. Similar trends are
observed for the noisy test set.

6.1. Improving Set Prediction

Lines [4c-7c]/[4n-7n] in Table 2 show results of experiments to com-
pensate for F1 degradation when the entity spoken order is unknown.

First we apply data augmentation as described in Section 3, where
we expose the model in a pre-training phase to ground truth with

entities in various random orderings, followed by fine-tuning on
alphabetic order entities. Results are shown in lines [4c]/[4n]. Small
but consistent improvements are observed for the attention based
encoder-decoder models, while the results for RNN-T are inconsistent.
To verify that the gains are due to data augmentation and not more
epochs of training or resetting the learning rate, we did a control
experiment where alphabetic order entities were used in both pre-
training and fine-tuning phases, and did not see any improvement.

As described in Section 4, next we infer the spoken order of
the entities by aligning the entities to the speech, and then use this
ground truth to train the SLU model. We used two methods for
alignment, one based on a hybrid ASR model (Section 4.1), with
results shown in [5c]/[5n], and the other based on an attention model
(Section 4.2, using the models in [L3c]/[L3n] to compute attention
values), with results shown in [6c]/[6n]. For both alignment methods,
the entity alignment error of clean training data is relatively small, 3%
for hybrid and 2% for attention. For noisy data, the alignment error
increases to 6% for hybrid but remains 2% for attention. The attention
model used to infer spoken order is [L3n], which has been adapted
to noisy in-domain speech data based on ground truth of entities in
alphabetic order. This is an advantage of implicit alignment using
an attention SLU model, since it is not straightforward to adapt the
hybrid model on the noisy speech data without verbatim transcripts.
The better alignment quality translates into better final SLU models:
[6n] results are consistently better than [5n], e.g. for the Conformer
encoder model, [C6n](F1=92.9%) is better by 1.4%.

Finally, in [7c]/[7n], we apply both methods, where we initialize
with a model pre-trained on randomly ordered entities and apply
fine-tuning on re-ordered ground truth as in [6c]/[6n]. Compared
to the baseline [3c], RNN-T performance increased by 11.4% from
81.2% to 92.6% and attention models increased by about 2%. In fact,
for the Conformer encoder model, [C7c](F1=94.3%) is identical to
that trained on full transcripts [C1c]. In the noisy condition, RNN-T
improved from 70.7% to 89.5% (18.8% increase), and data augmen-
tation consistently helps, even accounting for the reorganization of
entities into spoken order.

7. CONCLUSIONS

End-to-end models for speech recognition are flexible models that
can be adapted into SLU models that directly decode speech into a
meaning representation such as a set of semantic entities and sentence
intent. In this paper, we addressed how best to train such an SLU
model to perform this set prediction, given training data where the
spoken order of entities is unknown. We investigated two methods
to improve performance: data augmentation with randomly ordered
entities and pre-aligning the entities with speech to put them in spoken
order for training. The data augmentation is novel in that it is applied
at the output label level instead of input feature level. The alignment
method is novel because it relies on an attention based SLU model,
which has distinct advantages over a hybrid ASR model since it can
first be adapted to noisy speech data with non-verbatim ground truth,
resulting in 3 times lower alignment error (2% vs. 6%). Together,
our proposed methods improved SLU performance by 11.4% for
RNN-T and about 2% for attention models. For the best model, the
attention model with Conformer encoder, performance is improved
to a level similar to being trained on full transcripts. In summary,
we have demonstrated the ability to train on SLU data associated
with a set of semantic entities with unknown spoken order. Such data
can automatically be collected without needing human supervision,
significantly reducing the cost of building E2E SLU systems, while
achieving performance similar to that with full transcripts.
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[29] K. Audhkhasi, G. Saon, Z. Tüske, B. Kingsbury, and M. Picheny,
“Forget a bit to learn better: Soft forgetting for CTC-based
automatic speech recognition,” in Proc. Interspeech, 2019.

[30] G. Kurata and K. Audhkhasi, “Guiding CTC posterior spike tim-
ings for improved posterior fusion and knowledge distillation,”
in Proc. Interspeech, 2019.

[31] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito,
Z. Lin, A. Desmaison, L. Antiga, and A. Lerer, “Automatic
differentiation in PyTorch,” in Proc. NIPS Workshop, 2017.

[32] J. K. Chorowski, D. Bahdanau, D. Serdyuk, K. Cho, and Y.
Bengio, “Attention-based models for speech recognition,” in
Proc. NIPS, 2015.

[33] D. Krueger, T. Maharaj, J. Kramár, M. Pezeshki, N. Ballas, N. R.
Ke, A. Goyal, Y. Bengio, A. Courville, and C. Pal, “Zoneout:
regularizing RNNs by randomly preserving hidden activations,”
in Proc. ICLR, 2017.

[34] I. Loshchilov and F. Hutter, “Decoupled weight decay regular-
ization,” in Proc. ICLR, 2019.

[35] J. Cao, J. Wang, W. Hamza, K. Vanee, and S.-W. Li, “Style at-
tuned pre-training and parameter efficient fine-tuning for spoken
language understanding,” in Proc. Interspeech, 2020.


	1  Introduction
	2  E2E Models for SLU
	2.1  RNN Transducer model
	2.2  Attention based LSTM encoder-decoder model
	2.3  Attention based Conformer encoder-decoder model

	3  Set Based Data Augmentation
	4  Reordering Sets into Spoken Order
	4.1  Explicit keyword search based alignment
	4.2  Implicit internal alignment using attention

	5  Experimental Setup
	5.1  Dataset
	5.2  RNN-T SLU model
	5.3  Attention based LSTM encoder-decoder SLU model
	5.4  Attention based Conformer encoder-decoder SLU model

	6  Results
	6.1  Improving Set Prediction

	7  Conclusions
	8  References

