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ABSTRACT
Acoustic-to-articulatory inversion (AAI) is to obtain the
movement of articulators from speech signals. Until now,
achieving a speaker-independent AAI remains a challenge
given the limited data. Besides, most current works only use
audio speech as input, causing an inevitable performance bot-
tleneck. To solve these problems, firstly, we pre-train a speech
decomposition network to decompose audio speech into
speaker embedding and content embedding as the new per-
sonalized speech features to adapt to the speaker-independent
case. Secondly, to further improve the AAI, we propose a
novel auxiliary feature network to estimate the lip auxiliary
features from the above personalized speech features. Exper-
imental results on three public datasets show that, compared
with the state-of-the-art only using the audio speech feature,
the proposed method reduces the average RMSE by 0.25
and increases the average correlation coefficient by 2.0% in
the speaker-dependent case. More importantly, the average
RMSE decreases by 0.29 and the average correlation coeffi-
cient increases by 5.0% in the speaker-independent case.

Index Terms— Acoustic-to-articulatory inversion, Speech
decomposition, Personalized speech feature, Auxiliary fea-
ture, Speaker-independent

1. INTRODUCTION
The conversion from acoustic speech to articulatory move-
ment is called the acoustic-to-articulatory inversion (AAI) [1],
which plays a significant role in many applications (e.g., pro-
nunciation guidance [2], helping patients with vocal or hear-
ing impairments [3] and speech recognition [4]).

Early in [5], the acoustic speech was mapped to articula-
tory movement with the codebook. However, the results of
their inversion were highly dependent on the quality of the
codebook. Then, with the publishing of corpora containing
parallel acoustic and articulatory data, data-driven inversion
frameworks based on machine learning were proposed. And
the Mel-scale frequency cepstral coefficients (MFCC) of the
speech signals were first accepted as inputs and then mapped
to articulatory movements. Later, other methods like hidden
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markov model [6], mixture density network [7], and deep
belief network [8] were proposed. Recently, with the rise of
deep neural networks (DNNs), the deep bidirectional long
short-term memory (DBLSTM) was used by [9] in the AAI.
Since then, most of AAI related works (e.g., [10, 11, 12, 13])
used DBLSTM to deal with various applications but the in-
puts of the models were only audio speech features. As for
the speaker-independent AAI, the vocal tract length normal-
ization [11] was proposed to transform the acoustic spaces
of different speakers to a target one. [12] proposed the
idea of pre-train and fine-tune to improve the generalization
performance on their own dataset. Especially, [14] used one-
dimensional convolution of different sizes to extract the audio
feature. It improved the performance in speaker-independent
case by adding extra phoneme information, achieving the
state-of-the-art (SOTA) result on the public Haskins Produc-
tion Rate Comparison (HPRC) [15] dataset.

Until now, there are two main challenges leading to per-
formance bottlenecks in AAI. Firstly, most of existing works
only used the audio speech feature to predict the articulatory
movement without exploiting any additional features (i.e., lip
feature, speaker identity feature or the content feature). Sec-
ondly, some works devoted to improve the generalization per-
formance for the speaker-independent AAI, but their meth-
ods either lost the personalized information [11], needed large
amounts of data [12] or required additional phoneme informa-
tion [14].

To address the above two challenges, we propose a novel
SAF network composed of Speech Decomposition Network
(SDN), Auxiliary Feature Network (AFN) and Feature Trans-
formation Network (FTN), which we call SAFN in brief.
Firstly, in order to adapt to the speaker-independent case, we
explore a SDN inspired by the idea of speech synthesis [16]
to obtain the personalized speech features. Then, to further
improve the performance of AAI, we propose a novel AFN
to estimate the lip auxiliary features as the prior information
from the personalized speech features. Then, we design a
FTN to generate feature pairs by transforming the person-
alized speech features and the lip auxiliary features. Last
but not least, though AAI is not an one-to-one maping task
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Fig. 1. The overview of our proposed SAFN. The P is the personalized speech features and the A is the auxiliary features.

(i.e., different articulatory movements may correspond to the
same speech), this problem can be alleviated by ensuring
the smoothness of the articulatory movement on consecutive
frames. An overview of our SAFN is shown in Fig. 1.

In summary, this work has following three contributions:
1) To adapt to the speaker-independent case, a SDN is pro-
posed to obtain the speaker embedding and the content em-
bedding as personalized speech features. 2) To further im-
prove the performance of AAI, a novel AFN is proposed to
estimate the lip auxiliary features as prior knowledge. To the
best of our knowledge, this is the first work that introduces an
auxiliary feature instead of directly using the speech feature
as input. 3) Speaker-independent AAI experimental results
show the superior performance of the SAFN. On the public
HPRC dataset, the SAFN outperforms the SOTA by a large
margin (i.e., the average RMSE decreases by 0.29 and the av-
erage correlation coefficient increases by 5.0%).

2. PROPOSED APPROACH
2.1. Overall Framework
In Fig. 1, the core of SAFN are SDN and AFN. The SDN
is pretrained to obtain the speaker embedding and the content
embedding, which are served as the personalized acoustic fea-
tures. The AFN is trained to estimate the corresponding lip
auxiliary features as prior knowledge to help the prediction
of tongue organ. To get such a network, the MFCC of the
speech audio are extracted as speech features, and then the
features are further encoded by multi-scale one-dimensional
convolution. Besides, the speech features are sent to the pre-
trained SDN to obtain the corresponding two embeddings,
which are used as personalized speech features and sent to
the AFN to obtain the lip auxiliary features. Later, the per-
sonalized speech features and the lip auxiliary features are
feature fused [17] as multi-features. These multi-features are
sent to the articulatory inversion network (AIN) to predict the
movements of the tongue organs. The objective function for
training is to minimize the combination of the reconstruction
L2 loss of AFN and reconstruction L2 loss of AIN, which is
given as:

L = α×
m∑
i=0

(
yil − ŷil

)2
+ β ×

m∑
i=0

(
yit − ŷit

)2
, (1)

where α and β are set as 0.5 and 0.5 experimentally. yil and
yit refer to the estimated lip auxiliary features by AFN and
tongue movements by AIN, respectively. ŷil and ŷit refer to
the corresponding real labels.

2.2. Speech Decomposition Network
It was shown in [16] that speech signals inherently carry both
non-linguistic information and linguistic information. The
non-linguistic part refer to speaker identity, which is time-
independent. While the linguistic part refer to content, which
changes dramatically every several frames. On this basis, we
pre-train the SDN (see Fig. 2) to obtain the representation
of speaker and content. Then the two representations ob-
tained by the SDN, are fed as prior knowledge to adapt to
the multi-speaker case, further improving the speaker gener-
alization ability of SAFN.

The SDN is a self-supervised model, composed of a
speaker encoder, a content encoder and a decoder. The
speaker encoder is trained to encode the non-linguistic infor-
mation into the speaker representation. The content encoder
is trained to encode the linguistic information into the content
representation. And then the decoder is aimed to synthesize
the speech feature by combining these two representations.
However, we are just concerned about the part of speaker
representation and content representation, so we pretrain the
SDN beforehand to obtain the speaker encoder and content
encoder. Moreover, the SDN is trained on the whole dataset
without using the articulatory labels. Thus, the proposed
method is speaker-independent. We consider that the SDN
has learned all the speakers acoustic information including
identify information and content information.

The core of SDN is that, by normalizing the channel
statistics which control the global information, the instance
normalization (IN) [18] enforces the content encoder to fo-
cus on the linguistic part and remove the global information
(i.e, speaker information), while the averge-pool enforces the
speaker encoder to focus on the non-linguistic part and learn
the global information. Besides, the convolutional layer is
used to capture long-term information. The dense layer [19]
is used to enhance feature reuse and network training. And
the adaptive instance normalization (AdaIN) [20] is utilized
in decoder to bring the global information to the predicted



Fig. 2. Structure of the speech decomposition network.

speech feature though the corresponding parameters provided
by speaker encoder. By doing this, the global information
needed in the decoder is controlled by the speaker encoder.
Thus, the SDN is encouraged to learn factorized representa-
tions. The loss of SDN is the reconstruction L1 loss between
the input speech feature and the predicted speech feature. IN
is expressed as:

M
′

c =
Mc[w]− uc

σc
, (2)

where Mc represents the c-th channel with dimension w.
Mc[w] is the w-th element in Mc. To obtain IN, we first
compute the mean uc = 1

W

∑W
w=1Mc[w], the standard varia-

tion σc =
√

1
W

∑W
w=1(Mc[w]− uc)2 + ε, where ε is a small

value to avoid numerical instability. Each element in the array
Mc is normalized into M

′

c.

2.3. Auxiliary Feature Network

A new auxiliary feature is defined based on the EMA dataset
[21], where parallel acoustic and articulatory data are col-
lected. Multiple sensors are attached to the pre-specified posi-
tions in EMA recordings. There are totally six sensors placed
on the six articulators, namely tongue tip (T1), tongue blade
(T2), tongue rear (T3), upper lip (UL), lower lip (LL), and
lower incisors (LI). In particular, we divide these positions
into two categories: outside visible positions (UL, LL, and
LI) called lip auxiliary features in this work, and inner in-
visible positions (T1, T2, and T3) called the movements of
tongue organ.

Then the above lip auxiliary features are estimated from
the audio speech by AFN, instead of using the true label di-
rectly detected by the sensors. The reason is that we want
to keep the same input (only acoustic speech) as the previous
works. Besides, we do not freeze the parameters of the AFN
during the training of the whole network.

The AFN is to estimate the lip auxiliary features from
the personalized speech features, which is composed of three
BLSTM layers to extract the contextual information, and two
FC layers are followed by the BLSTM layers to generate tra-
jectories of lip auxiliary features. The core of the AFN is

expressed as:
Ol

t = σ(W l
ioxt + blio +W l

hoht−1 + blho),

Or
t = σ(W r

ioxt + brio +W r
hoht+1 + brho),

Ot =
1

2
× (Ol

t +Or
t ), (3)

where Ol
t is the lip auxiliary features estimated at the frame t

and the frame t− 1, Or
t is the lip auxiliary features estimated

at the frame t and the frame t+1. xt is the input personalized
speech features at frame t, ht is the temporary state at frame t
and W l

io, b
l
io are the corresponding transformation matrix and

bias from i to o. By processing the forward and backward
iteration, we obtain the Ot, which is the lip auxiliary features
estimated at contextual information.

3. EXPERIMENTS
3.1. Experimental Setup
Datasets The public MOCHA-TIMIT [22], MNGU0 [23],
and HPRC [15] speech corpora include six reading locations
set on T1, T2, T3, UL, LL and LI. In this work, we use the
three tongue locations of X and Z directions (i.e., T1, T2, T3)
as our experimental predicted target. The MOCHA-TIMIT
dataset consists of 460 utterances and EMA data recorded
for one male and one female speaker, who speak British En-
glish. The MNGU0 dataset consists of 1263 utterances and
EMA data recorded for one male speaking British English.
The HPRC dataset consists of 720 utterances and EMA data
recorded for eight native American English speakers.

Performance Metrics The performance is evaluated by
two classical metrics, i.e., root mean square error (RMSE)
and correlation coefficient (CC) [9].

Implementation Details In addition to the modules de-
scribed in section 2, the AIN contains three BLSTM layers
with 100 units in each layer, followed by 2 FC layers. We
train the proposed SAFN for 28800 iterations by Adam op-
timizer with a 1e-4 learning rate and the batch size is set as
5. Besides, the SOTA in [14] is reproduced as the baseline of
our experiments. The SDN (shown in Fig. 2) is pre-trained
beforehand by Adam optimizer with a 5e-4 learning rate and
the batch size is set as 25. Datasets are divided into the train-
ing set, the validation set, and the test set according to the
proportion 8:1:1, respectively.

3.2. Comparisons with the SOTA
To verify the generalization ability of SAFN, we conduct ex-
periments by comparing the proposed SAFN with the SOTA
[14] in two directions (i.e., single speaker and multiple speak-
ers) and four scenarios according to Table 1. S1 represents the
experiment on single speaker. S2 represents the experiment
on multi-speakers. S3 represents the speaker adaption experi-
ment. More precisely, we first pool the training data from the
whole dataset except the target speaker data to train a generic
model. Then we fine tune the generic model weights using
the target speaker data. S4 represents the speaker-independent



experiment. The RMSE and CC in four scenarios are shown
in Table 2.
Table 1. Experimental setup for 4 different scenarios. S1
means single speaker, S2 means multi-speaker, S3 means
speaker adaptation and S4 means speaker-independent. *
means taking the corresponding proportion of data from each
speaker. G, M and H represent dataset MNGU0, MOCHA
and HPRC, respectively. --- means no action.

Scenarios Dataset #Speaker Train Validation Fine-tune Test

S1 G, M, H 1 80% 10% --- 10%

S2 H N 80%* 10% --- 10%

S3 H N-1 80%* 20%* --- ---
1 --- --- 80% 20%

S4 H N-1 80%* 20%* --- ---
1 --- --- --- 100%

Table 2. RMSE and CC for SOTA and SAFN in four scenar-
ios.
Scenarios Model t1x t1z t2x t2z t3x t3z RMSE CC

S1(G) SOTA 0.886 0.792 1.061 0.707 1.106 0.911 1.014 0.922
SAFN 0.789 0.738 0.990 0.619 1.051 0.796 0.830 0.941

S1(M) SOTA 1.520 1.868 1.869 1.568 1.535 1.822 1.697 0.906
SAFN 1.289 1.497 1.403 1.442 1.571 1.551 1.459 0.924

S1(H) SOTA 1.725 1.760 1.871 1.684 2.060 2.170 1.881 0.901
SAFN 1.419 1.530 1.601 1.552 1.559 1.443 1.517 0.922

S2 SOTA 1.730 1.840 1.901 1.721 2.100 2.210 1.917 0.890
SAFN 1.488 1.857 1.701 1.631 1.709 1.589 1.662 0.903

S3 SOTA 1.730 1.759 1.830 1.651 2.030 1.850 1.808 0.911
SAFN 1.411 1.509 1.551 1.563 1.534 1.535 1.507 0.925

S4 SOTA 2.675 3.803 3.384 2.102 2.878 3.227 3.009 0.701
SAFN 2.184 3.077 2.938 2.621 2.412 3.096 2.721 0.751

Table 2 shows RMSE and CC value in four scenarios
among three public datasets. Basically, we can observe that
the proposed SAFN outperforms SOTA by almost 0.18mm
∼ 0.36mm on RMSE. Besides, CC scores show a similar
trend (increase by 1.4% ∼ 5.0%). It is obvious to see that
the improvement of CC in the speaker-independent case (S4)
is 5.0%, which is much higher than that in the speaker-
dependent cases (S1, S2 and S3). It indicates that the prior
speaker identity features obtained by SDN can effectively
alleviate the mismatch between the acoustic space of the
speakers in the training set and those in the test set, further to
adapt to the speaker-independent case.

3.3. Ablation Study
To verify the effectiveness of the proposed modules in Sec-
tion 2, we carry out the ablation experiment according to Ta-
ble 3, and the results are shown in Fig. 3. Obviously, in
the speaker-dependent cases (S1, S2 and S3), those models
with AFN (i.e., SAFN, SAFN-S-A and SAFN-A) outperform
those without AFN (i.e., SOTA and SAFN-S). However, in the
speaker-independent case (S4), those models with SDN (i.e.,
SAFN, SAFN-S-A and SAFN-S) outperform those without
SDN (i.e., SOTA, SAFN-A). Based on the above results, it
is demonstrated that in the speaker-dependent case, the AFN
improves the performance by adding lip auxiliary features as
prior knowledge. In the speaker-independent case, the prior

Table 3. Ablation experiment verifies the performance of
each module. SAFN-S, SAFN-A and SAFN-S-A represents
the AIN comparing with SDN, AFN and both of the above
two parts, respectively.

SDN AFN FTN

SOTA × × ×
SAFN-S X × ×
SAFN-A × X ×

SAFN-S-A X X ×
SAFN X X X

Fig. 3. CC of the different neural network in four scenarios.

personalized speaker information obtained by SDN brings a
large gain. Besides, comparing SAFN with SAFN-S-A, we
hypothesis that FTN improves the performance of SAFN by
enhancing the correlations between the personalized speech
features and the lip auxiliary features.

4. CONCLUSION

In this work, we propose a novel network SAFN to promote
the generalization ability of speaker-independent AAI and
further improve AAI performance. Firstly, to improve the
generalization ability of the proposed SAFN, a SDN is pre-
sented to obtain the speaker embedding and content embed-
ding as the personalized speech features. Besides, to further
improve the performance of AAI, a new AFN is proposed to
obtain the lip auxiliary features as prior knowledge to help the
prediction of the tongue organ. Experimental results on three
public datasets demonstrate that both in speaker-dependent
and speaker-independent scenarios, the SAFN outperforms
SOTA by a large margin. For the future work, the self-
supervised method based on Meta Learning will be applied
to the speaker-independent AAI task.
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