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ABSTRACT

We study how a cognitive radar can mask (hide) its cognitive
ability from an adversarial jamming device. Specifically, if
the radar optimally adapts its waveform based on adversar-
ial target maneuvers (probes), how should the radar choose
its waveform parameters (response) so that its utility func-
tion cannot be recovered by the adversary. This paper ab-
stracts the radar’s cognition masking problem in terms of the
spectra (eigenvalues) of the state and observation noise co-
variance matrices, and embeds the algebraic Riccati equation
into an economics-based utility maximization setup. Given
an observed sequence of radar responses, the adversary tests
for utility maximization behavior of the radar and estimates
its utility function that rationalizes the radar’s responses. In
turn, the radar deliberately chooses sub-optimal responses so
that its utility function almost fails the utility maximization
test, and hence, its cognitive ability is masked from the ad-
versary. We illustrate the performance of our cognition mask-
ing scheme via simple numerical examples. Our approach in
this paper is based on revealed preference theory in microe-
conomics for identifying rationality.

Index Terms— Cognitive Radar, Revealed Preference,
Adversarial Inverse Reinforcement Learning, Electronic
Counter Countermeasures, Kalman Filter

1. INTRODUCTION

In abstract terms, a cognitive radar is a utility maximizer -
it adapts its waveform, scheduling and beam by optimizing
utility functions. Consider the scenario where an adversar-
ial target probes a cognitive radar (to possibly degrade the
radar’s performance) and analyzes the radar’s responses to es-
timate the radar’s utility function. How can the radar covertly
mask its utility function by deliberately choosing responses
that confuse the adversary? In this paper, we propose a re-
vealed preference-based approach to mask the radar’s cog-
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nition with the working assumption that the cognitive radar
satisfies economics-based rationality.
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Fig. 1. Schematic of the Masking Cognition problem. The ad-
versarial target sends a sequence of probe signals to the radar
and records its responses. If the cognitive radar responds
naively to the adversarial target’s probes, its utility function
can be recovered via Afriat’s theorem (Top). If the radar de-
liberately perturbs its response using the inverse Afriat’s the-
orem, the adversary fails to reconstruct its utility (Bottom).

Before going into the details, we emphasize that the prob-
lem formulation and algorithms developed here also apply to
adversarial inverse reinforcement learning. In inverse rein-
forcement learning [} 12} 13, 4]], an inverse learner seeks to
estimate the utility function of a decision maker by observing
its decisions. A natural extension is: How can the decision
maker hide its utility function by slightly perturbing the ac-
tions it takes in the presence of an adversary?

Related Work. This paper builds on our previous work [S]
where the cognitive radar is not aware that it is being probed
by the adversarial target. If the radar is aware of the adver-
sary’s motives, how to deliberately respond with sub-optimal
responses to confuse the adversarial target (see Fig.[[)? In
a companion paper [6] we formulate the electronic counter
countermeasure problem as a principal agent problem where
the radar and adversary establish an information asymmetric
contract. In comparison, the formulation in the current paper
is adversarial where the radar seeks to confuse the adversary.

This paper can be viewed in the context of low-probability
of intercept (LPI) radar as a countermeasure to electronic in-
telligence (ELINT) gathering targets [[7]. Masking cognition



in the face of an adversarial target is closely related to the ar-
eas of electronic counter countermeasures (ECCM) and RF
stealth [8] in electronic warfare. [9] provides a comprehen-
sive list of ECCM techniques. [10, [11] propose waveform
adaptation schemes to counter barrage jamming. [12] pro-
poses time-frequency based ECCM solutions for deceptive
jamming. [13l 14} [15] exploit frequency diversity for radio
stealth in multi-target and moving target tracking. However,
cognition masking strategies with minimal performance loss
have not been explored previously.

Background. Revealed Preference and Afriat’s Theorem

Our approach to masking cognition in radars is based on re-
vealed preference in micro-economics. The area of revealed
preference [[16, [17, |18, [19] focuses on nonparametric detec-
tion of utility maximization behavior given a finite dataset of
probe and response signals.

Definition 1. A system is a utility maximizer if for a probe
signal o € R'?, the response signal 3 € R} satisfies:

8= argmaxgegm u(B), /B <1, (1)
where u is a monotone utility function.

In micro-economics, probe « is the vector of prices of
a set of goods, and response (3 is the consumption vector.
Hence, the constraint o B < 1 is a budget constraint with to-
tal budget $1. Indeed, this constraint can be replaced WLOG
by o/ B < ¢, where ¢ > 0 is the actual budget. Given a finite
time series of probes and responses from a system, how to test
is the system is a utility maximizer (T))?

The key result in revealed preference is Afriat’s theorem
[17, [18]]. A remarkable property of Afriat’s theorem is that
it gives testable conditions that are both necessary and suffi-
cient conditions for a time series of probes and responses to
be consistent with utility maximization behavior (T)).

Theorem 1 (Afriat’s Theorem [17]). Given a sequence of
probes and responses D = {(au, B), k € {1,2,...,K}},
the following statements are equivalent:
1. There exists a monotone, continuous and concave util-
ity function that satisfies ().

2. Afriat’s Test: There exist reals ug, Ay > 0, t =1,2,... | K

such that the following inequalities are feasible.
us—us— Moy (Bs— ) <0Vt s € {l,...,K}. (2)
The monotone, concave utility function given by

= i Mol (B — 3
u(B) te{fg,l.r.l.,}{}{ut + X (B—Br)}  3)
constructed using u; and \y () rationalizes D (T)).

3. The data set D satisfies the Generalized Axiom of Re-
vealed Preference (GARP), namely for any t < K,

afe > by VE<k—1 = afr < apfh.

Afriat’s theorem tests for economics-based rationality. In
the radar context, the adversarial target uses Afriat’s theorem
to test for the radar’s cognition. If Afriat’s inequalities
have a feasible solution, then the adversary constructs a set
of feasible utility functions (3) that rationalize the radar’s re-
sponses. The estimated utility is set-valued since the recon-
structed utility is ordinal - any positive monotone transfor-
mation of a feasible utility function rationalizes the radar’s
responses.

Outline: Sec.2]below reconciles the abstract utility max-
imization setup of Definition [T] with the radar’s cognitive be-
havior, specifically, waveform adaptation during target track-
ing. Sec.[3|proposes a cognition masking strategy for the radar
when the radar knows an adversarial target is reconstructing
its utility function. Finally, Sec.[d]illustrates the performance
of the cognition masking scheme via two numerical examples.

2. OPTIMAL WAVEFORM ADAPTATION AS
UTILITY MAXIMIZATION

Waveform adaptation is a crucial functionality of a cognitive
radar. In this section, we abstract optimal waveform adapta-
tion of a cognitive radar using a Kalman filter for target track-
ing into the utility maximization setup of Definition [I] The
key idea is to express the linear budget constraint of Defini-
tion[T]in terms of the eigenvalues (spectra) of the state and ob-
servation noise covariances of the radar’s state space model.

Linear Gaussian dynamics for a target’s kinematics [20]
and linear Gaussian measurements at the radar are widely as-
sumed as a useful approximation [21]. Accordingly, consider
the following state space model for the radar:

Tn+1 = AI" + wn(ak)a
Yn = an + Un(ﬁk:)7

o ~ To

“)

where x,, € X = R¥ is the target state with initial density
7o ~ N(20,%0), yn € Y = RY is the radar’s observation,
wy, ~ N(0,Q(ag)) and v, ~ N(0,R(By)) are mutually
independent, Gaussian noise processes.

The state noise covariance @ is parameterized by the ad-
versarial target’s probe oy and the observation noise covari-
ance R is parameterized by the radar’s response [ (see [15)
Sec.III-B] for a detailed discussion on the relation between
radar’s waveform and observation noise covariance R). It is
important to distinguish between the subscripts n, & in (@).
The subscript n indicates system updates at the tracker level
(faster timescale), and the subscript k£ indicates the epoch
(slower timescale) for the probe and response. When state x,
represents the position and velocity in Euclidean space, A is a
block diagonal constant velocity matrix [22]. The state noise
covariance () in {@) models acceleration maneuvers of the
target parameterized by the probes a.

The radar estimates the target state &, with covariance
>, from observations y;.,. The posterior ,, is propagated



recursively in time via the classical Kalman filter equations:

Zn-|-1|n = AEnAI + Q(ak)7 KnJrl = Czn—o—l\ncl + R(ﬂk)

1Z)nle = Zn—‘—l\nC/K»;Jila ijnJrl = Ai%n + wn+1(yn+1 - CA:i'n)

En—0—1 = (I - ¢n+1c)zrb+1\7n'

Assuming the model parameters (@) satisfy the conditions that
[4, C] is detectable and [A, /@] is stabilizable, the steady-
state predicted covariance ¥, is the unique positive semi-
definite solution of the algebraic Riccati equation (ARE):

Aoy, B, X) = — X+ A(X — BC'[CXC' + R(B)]1Cx) A
+ Qo) = 0. ®)

Denote ¥*(ay, Bk) as the solution of the ARE given probe
ay, and response [ at time k.

Our working assumption is that the radar maximizes a
utility function u to choose its optimal waveform at the start
of every epoch k. Hence, it only remains to justify the linear
budget a8 < 1 in Definition |1/ to embed waveform opti-
mization into the utility maximization setup. We suppose:

* the target probe « is the vector of eigenvalues of the

positive definite matrix @

* the radar response 3 is the vector of eigenvalues of the

positive definite matrix B!,

The i component of S is the measurement precision
(amount of energy) of the radar in the i mode. Similarly,
the i component of vy, is the incentive for considering the 7™
mode of the target. Put together, o}, 8, measures the signal-to-
noise ratio (SNR) of the radar. Thus, oz§€ Br < 1is effectively
a bound on the radar’s SNR. Hence, in the utility maximiza-
tion context, the radar chooses the most precise observation
noise covariance R(S)) such that its SNR lies below a partic-
ular threshold [l

To summarize, we have justified how the cognitive radar’s
waveform adaptation can be cast as the constrained utility
maximization problem of Definition m Hence, the adversar-
ial target can now use Afriat’s Theorem [I] to reconstruct the
radar’s utility. How should the radar react so that its utility
function is be recovered accurately? The rest of the paper
focuses on a cognition masking strategy for the radar. The
key idea is for the radar to deliberately choose sub-optimal
waveforms so that the radar’s utility u satisfies the Afriat in-
equalities (2) by a small margin, thus confusing the adversar-
ial target at the cost of performance degradation.

3. INVERSE REVEALED PREFERENCE FOR
MASKING UTILITY FUNCTION

We now present the main result of this paper, namely, in-
verse Afriat’s Theorem. If the adversary uses Afriat’s theo-
rem to reconstruct the radar’s utility function, the radar uses

Isee [3] for a more detailed discussion on the linear budget in terms of the
solution to the ARE (3).

A
Feasible set before
masking cognition
True utility
function

N —

Feasible set after
masking cognition

A

Fig. 2. Masking Cognition by Performance Degradation. If
the radar responds naively to the adversary target’s probes, its
utility passes the utility maximization test by a large margin
and hence, is close to the center of the feasible set (orange re-
gion) computed by the adversary. By deliberately perturbing
its response and degrading its performance, the radar shifts
the feasible set (green region) so that the true utility is within
€ distance from the edge of the set.

the inverse Afriat Theorem below to deliberately perturb its
responses and mask its utility function. Put differently, the
radar deliberately compromises on its performance to prevent
the reconstruction of its utility function.

In terms of the radar’s choice of waveform parameters,
the radar chooses sub-optimal sensing modes (observation
noise covariance) given the adversarial target’s maneuvers
(state noise covariance) so that the radar’s utility function is
masked from the adversary.

Theorem 2 (Inverse Afriat’s Theorem to Mask Cognition).
Suppose the radar optimizes a monotone, continuous utility
function u, and the adversary uses Theorem |l| to estimate
the radar’s utility function. Given the adversary’s probe se-
quence {ax < |, the radar’s response sequence {fBi}5_,
that masks its utility function is given by:

Br = Bi, + M- (6)

In (@), 5} is the optimal response to the probe signal ou,:
Bi = argmaxcgm u(f), st alB < 1. )

The sequence {n,’;}szl is the minimum perturbation that en-
sures the radar’s utility function passes the adversary’s test
Jor utility maximization @2) by g margin less than € € Ry.:
e = argming, > |93, )
k=1
u(Bs) > u(Be) — Vu(Be) (Bs — Bi) + € Vst (9)
B +m>0,Vt=1,2....K (10)

The variable ¢ > 0 is a user-defined parameter that deter-
mines the extent of cognition masking.



(a) u(B) = p(1) + B(2)
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Fig. 3. Deliberate performance loss (vertical-axis) of the cognitive radar (8] as a function of € (horizontal-axis) which measures
the extent of cognition masking on the adversary’s side (§). (i) ¢ = 0 corresponds to maximum cognition masking and hence
results in maximum performance loss. (ii) Due to larger local variation, for a fixed value of ¢, the quadratic utility (sub-figure
(b)) requires smaller perturbation (= 10 times) from the optimal response compared to the linear utility (sub-figure (a)).

Theorem 2] masks the cognitive radar’s utility function by
deliberately perturbing its responses so that the responses al-
most fail the adversary’s test for utility maximization (Theo-
rem|[I). If the radar naively responds to the adversary’s probes
(n;; = 0, Vk), the radar’s utility function passes the Afriat’s
test (Z) by a large margin and is thus a high-confidence util-
ity estimate for the adversary. Since the radar’s utility passes
the Afriat’s test by a very small margin due to the masking
scheme of Theorem [2] it now lies very close to the edge of
the feasible set of utilitiesﬂ and is no more a high-confidence
utility estimate for the adversary.

Extent of cognition masking €. A smaller value of ¢ implies
better cognition masking and higher performance degradation
of the radar. Setting € to 0 in (9) completely masks the radar’s
utility function (u lies on the edge of the feasible set), but
requires maximum degradation of radar performance (large
perturbation (8) from the optimal response (7). On the other
extreme, a large value of € results in zero performance loss of
the radar, but exposes the radar’s utility function to the adver-
sary since it lies very close to the center of the feasible set.

4. NUMERICAL EXAMPLES

Theorem [2] specified the procedure for a cognitive radar to
effectively mask its cognition from an adversarial target. Be-
low, we illustrate via simple numerical examples the masking
performance of Theorem [2]for two different utility functions.

We chose K = 50 and m = 2, the dimension of adver-
sarial target’s probe and radar’s response. The elements of
the adversarial target’s probe signals are generated randomly
and independently over time as o () ~ Unif(0.2, 2.5) for all

21t follows from simple observation that utilities that pass Afriat’s test
with zero margin form the edge of the set of utilities for which Afriat’s in-
equalities are feasible. Hence, the margin by which a utility function passes
Afriat’s test is proportional to its distance from the edge of the feasible set.

1 = 1,2 and time k£ = 1,2,..., K,where Unif(a, b) denotes
uniform pdf with support (a,b). Recall that the probe sig-
nal oy is the diagonal of the state noise covariance matrix:
Q. = diaglag(1), ax(2)].

Given the probe sequence {ay,k = 1,2,..., K}, the
cognitive radar chooses its response sequence {fk,k =
1,2,..., K} via (@) in Theorem[2} Recall from Sec.[2] that re-
sponse [y is the diagonal of the inverse of radar’s observation
noise covariance matrix: R; ' = diag[Bx(1), 3x(2)] . We
generate two separate sequences of responses for the same
probe sequence, but for two different utility functions (7):

(@) u(B) =B1)+B(2),  (b)u(B)=pL(1)+5*(2)

Figure [3| shows the loss in performance (minimum perturba-
tion from optimal response (§)) of the cognitive radar as a
function of e (extent of cognition masking), for both choices
of utility functions. From Fig.[3] we see that for both utility
functions, the radar’s performance decreases with increasing
€ (larger extent of utility masking). This is expected since
larger € implies larger shift of the feasible set of utilities con-
structed by the adversarial target.

5. CONCLUSION AND EXTENSIONS

This paper focuses on masking a radar’s cognition when
probed by an adversarial target. Our main result is Theorem 2]
that describes the radar’s cognition masking strategy. The
radar deliberately chooses sub-optimal responses at the cost
of its performance, but prevents its utility function from being
recovered by the adversary.

Finally, a useful extension of this paper would be to study
more general game-theoretic settings where even the adver-
sary knows the radar is trying to mask its cognition. How to
detect play from the Nash equilibrium of a game between the
radar and adversary?
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