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ABSTRACT
Recent approaches based on metric learning have achieved
great progress in few-shot learning. However, most of them
are limited to image-level representation manners, which fail to
properly deal with the intra-class variations and spatial knowl-
edge and thus produce undesirable performance. In this paper
we propose a Deep Bias Rectify Network (DBRN) to fully
exploit the spatial information that exists in the structure of the
feature representations. We first employ a bias rectify module
to alleviate the adverse impact caused by the intra-class varia-
tions. bias rectify module is able to focus on the features that
are more discriminative for classification by given different
weights. To make full use of the training data, we design a
prototype augment mechanism that can make the prototypes
generated from the support set to be more representative. To
validate the effectiveness of our method, we conducted exten-
sive experiments on various popular few-shot classification
benchmarks and our methods can outperform state-of-the-art
methods .

Index Terms— Few-shot learning, attention mechanism,
metric learning

1. INTRODUCTION

Few-shot learning (FSL) aims to learn a model with good
generalization capability to get rid of the dependency of the
annotated data. Concretely, it can be readily adapted to the
agnostic tasks with a handful of labeled examples. However,
the extremely limited annotated samples per class can hardly
predict the truly class distribution, making FSL tasks challeng-
ing.

To tackle the FSL problem, a variety of approaches have
been proposed. For example, some state-of-the-art methods
resort to learn a deep embedding network to represent the inter-
class diversity[2, 1, 4]. Furthermore, they use non-parametric
classifiers(e.g., the nearest neighbor classifier) to avoid the
complex optimization problem in learning a classifier from a
few examples. Another category of methods[3, 7] constructs
a meta-learner that can quick adopt to new tasks with a few
labeled samples, either by a good initialization ,or by effective
learning algorithms. Moreover, the last group of methods[9,
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10] directly solve the data deficiency by hallucinating new
images based on labeled images from similar categories.

The previous methods mainly focus on knowledge gen-
eralization, samples generating or optimization algorithms,
but have not paid sufficient attention to the way of generating
appropriate representations. Such representations can make
better use of the limited examples. DN4[1] goes one step
further, they replace the image-level representations with the
set of local representations. This approach can preserve the
discriminative knowledge which loses during the global pool-
ing process. However, this method has not taken account of
the spatial information, e.g., the background clutter and the
intra-class variations. Such variations may force the features
from the same class far away from each other in a given metric
space. If there are sufficient labeled data for training, the sub-
sequent learning procedure of convolutional neural networks
with sufficient training samples can alleviate such interference.
However, considering the specific nature of few-shot learn-
ing, it is nearly impossible to eliminate the impact caused by
the noise and thus deteriorates the performance. Therefore, a
desirable meta-learning approach should have the ability to
properly utilize the spatial knowledge and reduce the interfer-
ence caused by the aforementioned reasons.

A simple approach to alleviate the noise is giving higher
weight to the visual features are most discriminative for a given
feature map. Towards this, we propose a deep bias rectify mod-
ule based on non-local attention. The module will calculate
the weight of each component by comparing it with the whole
representations. Besides, the bags-of-features model used in
DN4[1] takes all raw features generated from the support set
for classification. Such features contain a lot of noise which
affects the performance. Therefore, we assembled the feature
embeddings as prototypes for each visual category similar to
ProtoNet[5]. In addition, we propose a simple approach called
prototype augment to reduce the scarcity of data. We resize
each support image to multi-scale before sending it to the fea-
ture extractor, the output feature maps will be fused to produce
single prototype for classification.

ar
X

iv
:2

11
1.

00
75

4v
1 

 [
cs

.C
V

] 
 1

 N
ov

 2
02

1



Fig. 1. Illustration of the whole network architecture of our
DBRN for a 5-way 1-shot few-shot classification task.

2. OUR METHOD

2.1. Feature extractor

As the traditional set in few-shot learning, we employ a CNN
as the feature extractor which represents the images from
support and query set by high dimensional feature. In general,
the feature extractor only contains convolutional layers but
has no fully connected layers Ψ(·). Unlike recent literature on
the few-shot classification, we remove the final global average
pooling layer and produce a feature map Ψ(x) ∈ Rw×h×d
rather than a vector Ψ(x) ∈ Rd to represent the visual feature
of the image, where w denotes the width and h denotes the
height of the feature map. Then the feature map of the image
is formulated as:

Ψ(xi) = [v1, ..., vr] ∈ Rr×d, (r = w × h) (1)

Where ui denotes the ith local feature of image and r
denotes the resolution of feature maps. Not in line with DN4[1]
that directly use the local features for classification, we take
the centriod of the local features as the prototype of each
class. We believe that take the centriod approach can eliminate
the bias without extra parameters, which first proposed in
ProtoNet[5]. The difference is that we take the centriod of
every local features. Based on Equation 1, the prototype of
class c in the support set can be formulated as:

Pc =
1

|Sc|
∑

(x,y)∈Sc

Ψ(x) ∈ Rr×d (2)

Where (x, y) ∈ Sc denotes the support examples belong to
class c, the Pc can represent the visual feature of each class in
the support set. The prototype is used to calculate the similarity
between images from the query set and support set.

2.2. Similarity module

The similarity module is used to calculate the distance between
the prototype in Equation 2 and the query images to get the

Fig. 2. The illustration for the motivation for bias rectify
module.

classification score of the query images. In this paper, we use
the cosine similarity as metric function and k-NN as similarity
function to select the similarity value for query images.

As it described in Section 2.1, given a query image x, the
feature extractor will embed it as Ψ(x) = [v1, ..., vr]. Then
the similarity value can be calculated as follow, where The
Pc = [u1, ..., ur] ∈ Rr×d means the prototype for images
belong to class c and k means we just concern the k nearest
feature vectors in the prototype for the query image. The
similarity between x and Pc is formulated as:

Sim (Pc,Ψ (x)) =

k∑
j=0

sτ (ui, vj)

sτ (x, y) = τ 〈x̂, ŷ〉

(3)

for x, y ∈ Rd, x̂ is the l2-normalized conuterpart for x.
sτ is the scaled cosine similarity, with τ being a learnable
parameter as in [23, 24]. Then, the similarity module is defined
as:

fθ[P ](x) = σ ([Sim (Pc,Ψ (x))]nc=1) (4)

Where P = [P1, ..., Pn] means the prototype set for all
classes in support set and σ : Rd → Rd is the softmax function.

2.3. Bias rectify module

In traditional few-shot classification tasks, the support set
merely consists of several images for each class. Then we
need to classify different query images based on this support
set. The lack of data in the support set leads to an inevitable
problem: the bias in different images from the support set and
the query set will deteriorate the performance of the classifi-
cation model. As Figure 2 shows, different parts of the object
may exist in the support images and query images. It will lead
to a significant difference in the visual features. So that we
propose a bias rectify module that can effectively alleviate the
noise and enhance the accuracy of our model. This is the most
improvement we have made based on DN4[1].

Firstly, we can observe that the features which occupy a
larger area in original images will occupy more space in feature
maps. Therefore, we can calculate the co-occurrence rate of the



special part images by calculating their corresponding feature
map co-occurrence rate. To achieve this goal, we calculate the
cosine similarity between the local feature of query images
and the whole feature map to generate the co-occurrence rate
of this local feature:

Wvj =
1

ξ

r∑
i =0

(
ui × vj
|ui| × |vj |

)ω
(5)

Where the Wvj denotes the co-occurrence rate of local
feature vector vi in query images, r denotes the resolution of
the feature maps generated from support images, ξ denotes the
normalized parameter and ω denotes a hyper-parameter that
control the dispersion of Wvj .

This bias rectify module is simple but effective during
few-shot classification tasks that can benefit the experiment
result without any extra parameters. This module will more
effective when the support images and query images have more
a different appearance.

2.4. Prototype augment

Consider the lack of labelled data, the size of the object in
the support images may differ from the object in the query
images. Therefore, we resize the support images in multi-scale
before input them to the feature extractor, then we calculate
the prototypes of the support set with all these feature maps.
By this method, the prototypes of the support set become
more robust when encountering the variation of the size of the
object. The prototype generated from the support set can be
represented as follow:

Prototype(c) =
1

|Sc|
∑

Pci
∈Sc

Pci (6)

Where Sc = [Pci , ..., Pcn ] denote the set of prototypes
with different scale, Pci denote the prototype of class cwith the
ith scale which calculated by Equation 2. In our experiments,
we take the triple-scale method, which means the images in
the support and query set will become three times during meta-
training and testing. During experiment, we set the resolution
of the images as 84× 84, 92× 92, 108× 108 .

3. EXPERIMENTS

3.1. Dataset

We use the ResNet-12 trained following previous work
FEAT[32] on a RTX3090. We evaluate the performance of
our method for few-shot classification tasks on three popular
benchmark dataset: miniImageNet[2], tieredImageNet[25],
Caltech-USCD birds-200-2011(CUB)[26].

miniImageNet is derived from ILSVRC-12 dataset. It con-
tains 100 different classes with 600 samples per class. We
follow the splits used in previous work [8], which divide the

Fig. 3. Visualization for our DBRN model.Please zoom for
details.

dataset into 64, 16, 20 for training, validation and test, re-
spectively. tieredImageNet is a larger subset derived from
ILSVRC-12 dataset[16]. It contains 608 classes from 34 super-
classes, which includes 1281 images each class. We follow
the splits in [25], where take 351, 97 and 160 classes as the
training set, validation set and testing set respectively. CUB
was originally proposed for fine-grained classification tasks. It
includes 200 different birds with 11,788 images in total. Fol-
lowing the splits in previous works [27], we take 100 classes
for training, 50 classes for validation and 50 classes for testing.

3.2. Implementation details

Because the motivation of this work is largely inspired by the
DN4 [1]. We re-implement the DN4 as our baseline model.
We use the ResNet12[24] as our model backbone following
the previous literature to get a fair comparison with previ-
ous work. For each dataset, we pre-train a classifier with the
training set. Then we remove the fully connected layer in
ResNet12, so that the network becomes a convolutional net-
work that maps each input image as a feature vector. In order
to preserve the local feature for input images, we remove the
global average pooling layer so that the network becomes a
fully convolutional network. When input images resize as
84× 84, the backbone network generates a feature map with
size 5× 5× 640.Different from previous works which train-
ing the network from scratch, we apply a pre-train strategy
as suggested in [28]. After pre-training, we remove the fully
connected layer select the pretrained model with the highest
performance in validation set.

3.3. Main results and Comparisons

Table 1 and Table 2 presents 5-way classification accuracy (%)
with 95% confidence intervals of our method and others on
miniImageNet, tieredImageNet and CUB. We take the k-NN
algorithm similar to DN4[1] as our baseline, which selects the
k nearest feature vectors between support set and query image
as similarity vector. Firstly, we can observe that our baseline al-
ready archives a better performance than some state-of-the-art
methods. This may be because we take an end-to-end training
strategy rather than fix the backbone network and tempera-
ture scaling of the logits while meta-training. Moreover, our
DBRN further promotes the performance and outperforms all
state-of-the-art methods with a significant margin which effec-



Table 1. Average 5-way classification performance(%)
with 95% confidence intervals on miniImageNet and
tieredImageNet.

Method backbone miniImageNet tieredImageNet

1-shot 5-shot 1-shot 5-shot

ProtoNet[5] ResNet12 60.37±
0.83

78.02±
0.57

65.65±
0.92

83.40±
0.65

Baseline++[27] ResNet12 55.43±
0.81

77.18±
0.61

61.49±
0.91

82.37±
0.67

Neg-
Cosine[31] ResNet12 63.85±

0.81
81.57±
0.56

- -

FEAT[32] ResNet12 66.78±
0.20

82.05±
0.15

70.80±
0.23

84.79±
0.16

CTM[29] ResNet12 64.12±
0.82

80.51±
0.13

68.41±
0.39

84.28±
1.73

DeepEMD[12] ResNet12 65.91±
0.82

82.41±
0.56

71.16±
0.87

86.03±
0.58

E3BM[33] ResNet12 63.80±
0.40

80.10±
0.30

71.20±
0.40

85.30±
0.30

PPA[28] WRN-28-10 59.60±
−

77.46±
−

63.99±
−

81.97±
−

LEO[6] WRN-28-10 61.76±
0.08

77.59±
0.12

66.33±
0.05

81.44±
0.09

TADAM[34] ResNet12 58.50±
0.30

76.70±
0.30

- -

Our Baseline ResNet12 61.13±
0.27

76.97±
0.20

70.45±
0.22

83.37±
0.33

DBRN(Ours) ResNet12 67.01±
0.28

83.33±
0.19

72.80±
0.31

87.13±
0.21

Table 2. Average 5-way classification performance(%) with
95% confidence intervals on CUB.

Method backbone CUB

1-shot 5-shot

ProtoNet[5] ResNet12 66.09± 0.92 82.50± 0.58
Baseline++[27] ResNet12 67.02± 0.90 83.58± 0.54
Neg-Cosine[31] ResNet12 72.66± 0.85 89.40± 0.43
MAML[3] Conv4 50.45± 0.97 59.60± 0.84
MVT[35] ResNet12 - 80.33± 0.61
DeepEMD[12] ResNet12 75.65± 0.83 88.69± 0.50

Our Baseline ResNet12 66.63± 0.28 81.64± 0.19
DBRN(Ours) ResNet12 75.78± 0.27 92.21± 0.14

Table 3. Ablation study on miniImageNet with 95% confi-
dence intervals.

Pow Weight ProtoAug miniImageNet

5way1shot 5way5shot

% % % 63.88 80.52
% ! % 65.53 81.80
! ! % 66.03 82.58
! ! ! 67.01 83.33

tively demonstrate the effectiveness of our method. Compared
our DBRN with our baseline, we can observe that apply an
original k-NN strategy on backbone for few-shot classification
is not enough. It means that simply represent similarity for
two images with nearest features discard important knowledge
between images.

3.4. Ablative study

To further validate the effectiveness of our method, we apply
ablation experiments as it is shown in Table 3. Weight and
pow are components for the bias rectify module in Equation
5 . Protoaug is prototype augment mechanism in Equation 6.
The ablation of each component in our model will result in the
drop of performance.

3.5. Visualization of bias rectify weights

To demonstrate the effectiveness of the bias rectify module pro-
posed in Section 2.3 during the inference process, we conduct
a visualization experiment between regions of correspondence
images for support set and query set. We give different bright-
ness for the regions of query images concerning their weight.
As it is shown in Figure 3 , the regions which co-occurrence
in both images will get higher weight, regardless of the size
difference between these regions. That means bias rectify
module will alleviate the bias between different images and
benefit the classification performance. We take both correctly
and incorrectly classified pair of images in our experiment to
further demonstrate the robustness of our method.

4. CONCLUSION AND FUTURE WORK

In this work, we proposed a simple but effective DBRN for the
few-shot classification. We used feature extractors based on
end-to-end training on base-class with standard cross-entropy
loss without any extra data or complex meta-training strategy
that advocated in recent few-shot literature. Firstly, we focus
on the intra-class variations and high-variance background that
exists in the support and query set and proposed a nonparamet-
ric rectify module to alleviate the influence of this bias. Then
prototype augment mechanism is proposed for the lack of the
labeled data during inference. In this context, designing a more
powerful prototype generation mechanism that can effectively
utilize the discriminative information between images looks
like a very promising direction for future research. The experi-
ment results obtained on three popular datasets demonstrated
that our DBRN significantly outperforms existing methods and
achieves new state-of-the-art on few-shot classification task.
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