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ABSTRACT

Sub-band models have achieved promising results due to their abil-
ity to model local patterns in the spectrogram. Some studies further
improve the performance by fusing sub-band and full-band informa-
tion. However, the structure for the full-band and sub-band fusion
model was not fully explored. This paper proposes a dual-path
transformer-based full-band and sub-band fusion network (DPT-
FSNet) for speech enhancement in the frequency domain. The intra
and inter parts of the dual-path transformer model sub-band and
full-band information, respectively. The features utilized by our
proposed method are more interpretable than those utilized by the
time-domain dual-path transformer. We conducted experiments on
the Voice Bank + DEMAND and Interspeech 2020 Deep Noise
Suppression (DNS) datasets to evaluate the proposed method. Ex-
perimental results show that the proposed method outperforms the
current state-of-the-art.

Index Terms— speech enhancement, frequency domain, dual-
path transformer, full-band and sub-band fusion

1. INTRODUCTION

Speech enhancement (SE) is a speech processing method that aims
to improve the quality and intelligibility of noisy speech by remov-
ing noise [1]. It is commonly used as a front-end task for automatic
speech recognition, hearing aids, and telecommunications. In re-
cent years, the application of deep neural networks (DNNs) in SE
research has received increasing interest.

In general, DNN-based methods can be divided into two ma-
jor categories: time-domain methods [2} 3| |4] and time-frequency
domain (T-F) methods [5, 16} [7, |8]]. Time-domain methods estimate
clean waveforms directly from the noisy raw data in the time domain.
Traditional T-F domain methods usually transform the noisy input
waveform into a Fourier magnitude spectrum by short-time Fourier
transform, modify the spectrum by T-F mask, and reconstruct the
enhanced spectrum into enhanced waveform by inverse short-time
Fourier transform. They usually use the phase of the noisy mixture,
which limits the upper bound of the denoising performance. Recent
T-F domain methods using complex spectra as features can preserve
phase information and have achieved promising performance [8].

Sub-band processing is a common method in audio processing
[9} 10, 111], which takes sub-band spectral features as input and out-
put. Previous work [12] pointed out that the local patterns in the
spectrum tend to be different in each frequency band. The sub-band
model handles each frequency independently, which allows the sub-
band model to focus on the local patterns in the spectrum and there-
fore achieve good results in SE tasks. In [7] further improves the
performance by fusing sub-band and full-band information.

Recently, dual-path networks [[13} 114,15/ [16] have achieved ex-
ceptional performance due to their ability to model local and global
features of the input sequence. Some studies [14} [15] have intro-
duced transformer structures [[17] into dual-path networks, where
input elements can interact directly based on self-attention mech-
anism, to further improve the performance of dual-path networks.
However, these studies were based on simple time-domain features
and did not further investigate the effect of the input of the dual-path
network on the enhancement performance. [[16] did try to change the
structure of encoder and decoder to extract more effective inputs for
the dual-path network, but still limited to time-domain features.

Inspired by the above problems, we propose a dual-path trans-
former based full-band and sub-band fusion network (DPT-FSNet)
for speech enhancement. Specifically, our proposed model consists
of an encoder, decoder, and dual-path transformer. We utilize a con-
volutional encoder-decoder (CED) structure to extract an efficient
latent feature space for the dual-path transformer. Both the encoder
and decoder consist of a 1x1 convolutional layer and a dense block
[18]], where dilated convolutions are utilized inside the dense block
for context aggregation. The dual-path transformer is composed
of two parts, intra-transformers and inter-transformers. The intra-
transformer models sub-band information and the inter-transformer
merges the sub-band information from the intra-transformer to
model the full-band information. We evaluated our model on the
VoiceBank+DEMAND (VCTK+DEMAND) dataset [19] and In-
terspeech 2020 Deep Noise Suppression (DNS) dataset [20]. The
experimental results show that the proposed model achieves better
results than other speech enhancement models.

2. IMPROVED TRANSFORMER

Generally speaking, a transformer consists of an encoder and a de-
coder [17]). In this paper, we choose the transformer encoder as our
basic block. To avoid confusion, the reference to the transformer in
this paper refers to the encoder part of the transformer. The origi-
nal transformer encoder usually contains three modules: positional
encoding, multi-head self-attention, and position-wise feed-forward
network. In this paper, our transformer consists of two modules as
in [14]: multi-head self-attention and modified position-wise feed-
forward network.

2.1. Multi-head self-attention

We used the multi-headed self-attention from [17]. The multi-
headed self-attention module can be formulated as:
Qi=2ZWE K = ZWE vV, = Z2ZWYi € [1,h] )
. Qi K;
head; = Attention(Q, K;,V;) = SoftMax( Wi 2)
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Fig. 1. Architecture of the proposed DPT-FSNet. a) The overall diagram of the proposed method b) The detail of the dense block. c) The
detail of the dual-path transformer. d) The detail of the improved transformer.

MultiHead = Concat(heady, - - - , head,)W© 3)

Mid = Layer Norm(Z + MultiHead) “)

where Z € R'*? is the input sequences with length / and dimension
d, and Q;, K;, Vi € R™>*Y" are the mapped queries, keys and val-
ues, respectively. W, WX, WY € R*Y/" and WO € R¥*? are
linear transformation matrices.

2.2. Modified position-wise feed-forward network

A key issue for the transformer is how to exploit the order informa-
tion in the speech sequence. Previous studies [14} [21]] have found
that the positional encoding utilized in the original transformer is
not suitable for dual-path networks. Inspired by the effectiveness
of recurrent neural networks in tracking order information, a GRU
layer is used as the replacement of the first fully connected layer in
the feed-forward network to learn the location information [21]]. The
output of the multi-head self-attention is passed through the feed-
forward network followed by residual and normalization layers to
obtain the final output of the transformer.

FFN(Mid) = ReLU(GRU (Mid))W; + by )
Output = Layer Norm(Mid + FFN) 6)

where F'F N (-) denotes the output of the position-wise feed-forward
network, W7 € R £*? p, € R?, and dry =4 xd.

3. PROPOSED DPT-FSNET

In this section, we propose a frequency-domain dual-path trans-
former network for the SE task. As shown in Fig.1, our proposed
model consists of an encoder, a dual-path transformer processing
module (DPTPM), and a decoder.

3.1. Encoder

The encoder consists of a 1x1 convolutional layer and a dilated-
dense block, where the dilated-dense block consists of four dilated
convolutional layers. The input to the encoder is the complex
spectrum X € R2XT*F regulted from short-time Fourier trans-
form (STFT), and the output is a high-dimensional representation
U € RO*TXF with C T-F spectral feature maps.

3.2. Dual-path transformer processing module

The DPTPM consists of two 1x1 convolutional layers, B dual-path
transformers (DPTs), and a gated 1x1 convolutional layer. Before
the DPTs, we use a 1x1 convolutional layer to halve the channel di-
mension of the encoder output features to form a new 3-D tensor

D € RE *T*F (¢’ = (/2), and use D as the input to the DPTs,
as presented in Fig.1. Each DPT consists of an intra-transformer and
an inter-transformer, where the intra-transformer models sub-band
information and the inter-transformer models full-band information.
Different from [22], the DPT handles time and frequency paths al-
ternatively instead of parallelly.

The intra-transformer processing block models the sub-band of
the input features, which acts on the second dimension of D

Dirtre — IntraTransformery[ DY)
. . )
=[O i =1, F)]
where D™ is the output of IntraTransformery, fi™™® is the

mapping function defined by the/transformer, b = 1,2...,B and
Dite™ = D, DIt -, 4] € RE X7 s the sequence defined by all
the 7" time step in the ¢-th sub-band. That is, the intra-transformer
models the information of all time steps in each sub-band of the
speech signal.

The inter-transformer processing block is used to summarize the
information from each sub-band of the intra-transformer output to



learn the global information of the speech signal, which acts on the
last dimension of D

Dinrter — InterTransformery[ Dt

inter intra - - (8)
:[fb (Db [:7j7:]a]:1:-~~:T)}

where D{"" is the output of InterTransformery, fi™*" is the
mapping function defined by the transformer, and D{™*"[:, j,:] €
R X is the sequence defined by the j-th time step in all F' sub-
band. That is, the inter-transformer models the information of all
sub-bands of the speech signal at each time step. With the intra-
transformer, each time step in D{™"® contains all the information of
the corresponding sub-band, which allows the inter-transformer to
model the global (i.e., full-band) information of the speech signal.

The final output of the transformer D" is passed through a
1x1 convolutional layer to double the channel dimension of the out-
put feature and then through a gated convolutional layer to smooth
the output value of the DPTPM.

3.3. Decoder

The decoder consists of a 1x1 convolutional layer and a dilated-
dense block, where the dilated-dense block is the same as in the
encoder. The feature from the DPTPM output is passed through
the decoder to obtain the estimated complex ratio mask [23]. The
enhanced complex spectrum is obtained by the element-wise mul-
tiplication between encoder’s input and the mask, which is passed
through the ISTFT to obtain the enhanced speech waveform.

3.4. Loss fuction

In order to make full use of the time-domain waveform-level features
and the T-F domain spectrum features, our loss function combines
both time-domain and T-F domain losses. The loss function is as
follows:

L=oa;x Luudio + ag X Lspectrul (9)

Lgwdio 1s mean square error (MSE) loss:
] N-1
Laudio = ~ »_ (i — 4:)° (10)
N =0

where y and g are the sample of the clean speech and the enhanced
speech, respectively. and N denotes the number of samples in the
waveform. Lgpectrar is L1 loss, which is defined as:
| T-1F-1
Lspectrat =70 I(‘Y"“(tvf)‘_ ‘Y/'f(tvf)‘)
it =7 5 3 .
+ (it N = Yt HDI

where Y and Y denote the spectrum of the clean speech and the
spectrum of the enhanced speech, respectively. r and 7 are the real
and imaginary parts of the complex spectrogram. 7" and F' are the
number of frames and the number of frequency bins, respectively

4. EXPERIMENTS

4.1. Dataset

We use a small-scale and a large-scale dataset to evaluate the pro-
posed model. For the small-scale dataset, we use the VCTK+ DE-
MAND dataset, which is widely used in SE research. This dataset
contains pre-mixed noisy speech and its paired clean speech. The

clean sets are selected from the VoiceBank corpus [25], where the
training set contains 11,572 utterances from 28 speakers, and the test
set contains 872 utterances from 2 speakers. For the noise set, the
training set contains 40 different noise conditions with 10 types of
noises (8 from DEMAND [26] and 2 artificially generated) at SNRs
of 0, 5, 10, and 15 dB. The test set contains 20 different noise con-
ditions with 5 types of unseen noise from the DEMAND database
at SNRs of 2.5, 7.5, 12.5, and 17.5 dB. All the utterances are down-
sampled to 16kHz. We use 4-second long segments. If an utterance
is longer than 4 seconds, a random 4-second slice will be selected
from that utterance.

For the large-scale dataset, we use the DNS dataset. The DNS
dataset contains over 500 hours of clean clips from 2150 speakers
and over 180 hours of noise clips from 150 classes. We simulate
the noisy-clean pairs with dynamic mixing during training stage.
Specifically, before the start of each training epoch, 75% of the clean
speeches are mixed with randomly selected room impulse responses
(RIR) provided by [27]]. By mixing the clean speech (75% of them
are reverberant) and noise with a random SNR in between -5 and
20 dB, we generate the speech-noise mixtures. For evaluation, the
DNS dataset has two non-blind test sets named with_reverb and
no-reverb, both of which contain 150 noisy-clean pairs.

4.2. Experimental setup

The window length and frame shift of STFT and ISTFT are 25ms
and 6.25ms, respectively, and the FFT length is 512. The number
of feature maps C' of the T-F spectrum is set to 64. All convolu-
tional layers in the encoder and the decode are followed by layer nor-
malization and parametric ReLU nonlinearity. Convolutional layers
in the DPTPM are followed by parametric ReLU nonlinearity. The
dense block consists of four dilated convolutional layers with dilated
rate d = 2. The number of input channels in the successive layers of
the dense block increases linearly as C, 2C, 3C, 4C, and the output
after each convolution has C' channels. We use 4 stacked dual-path
transformers, i.e., B = 4 and h = 4 parallel attention layers are em-
ployed. The hyperparameters o1, a2 in the Eq.(9) are set to 0.4 and
0.6, respectively. In the training stage, we train the proposed model
for 100 epochs. We use Adam [28] as the optimizer and a gradient
clipping with maximum L2-norm of 5 to avoid gradient explosion.
A dynamic strategy [[17] is used to adjust the learning rate during the
training stage.
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where n is the number of steps, dmoder denotes the feature size of
the input of the transformer, and k1, k2 are tunable scalars. In this
paper, k1, k2, dmodel, and warmup are set to 0.2, 4e™4, 32, 4000,
respectively.

4.3. Evaluation metrics

On both datasets, we use wide-band PESQ (dubbed WB-PESQ) [29]
and STOI [30] as evaluation metrics. WB-PESQ and STOI quan-
tify the perceptual quality and the intelligibility of a speech signal,
respectively. For the VCTK+DEMAND dataset, we also employ
the three most commonly used metrics in the VCTK+DEMAND
dataset, which are CSIG for signal distortion, CBAK for noise distor-
tion evaluation, and COVL for overall quality evaluation [31]]. CSIG,
CBAK, and COVL are mean opinion score (MOS) predictors, with
a score range from 1 to 5. For the DNS dataset, we also employ
SI-SDR as evaluation metrics. Higher scores indicate better perfor-
mance for all metrics.



Table 1. Comparison with other state-of-the-art systems on the VCTK+DEMAND dataset.

Method Domain WB-PESQ STOI CSIG CBAK COVL Para. M)
Noisy - 1.97 0.91 3.34 2.44 2.63 -
MetricGAN [5] F 2.86 - 3.99 3.18 342 1.90
TSTNN [16] T 2.96 0.95 4.33 3.53 3.67 0.92
T-GSA [6] F 3.06 - 4.18 3.59 3.62 -
DEMUCS [3] T 3.07 0.95 4.31 3.40 3.63 335
SE-Conformer [4] T 3.13 0.95 4.45 3.55 3.82 -
Learnable Loss Mixup [24] F 3.26 - 4.49 3.27 3.91 20.32
DPT-FSNet (Proposed) F 3.33 0.96 4.58 3.72 4.00 0.88

5. EXPERIMENTAL RESULTS

5.1. Results on the VCTK+DEMAND dataset

The proposed method is compared with other methods which also
employ the same VCTK dataset. As shown in Table 1, our proposed
model outperforms other transformer-based models such as TSTNN,
T-GSA, SE-Conformer, and achieves state-of-the-art performance in
terms of WB-PESQ, STOI, CSIG, CBAK, COVL with the least pa-
rameters.

5.2. Ablation analysis

The experimental results in the previous subsection demonstrate
that our method improves the SE performance. To further vali-
date the effectiveness of our method, we performed an ablation
analysis. We designed four experiments labeled CED+Dual-
path former, STFT+CED+BLSTM, STFT+CED+Sub-band former,
STFT+CED+Full-sub former, which are abbreviated as exp. 1, exp.2,
exp.3, exp.4 in the following. Exp.4 is our proposed method. The
difference between exp.l and exp.4 is that exp.l take time-domain
features as input, which replaces STFT/ISTFT with segmentation
and overlap-add stage as in [16]. The difference between exp.3
and exp.4 is that the intra part and inter part of the dual-path trans-
former in exp.3 both model sub-band information as in Eq.7 while
the inter part of the dual-path transformer in exp.4 model full-band
information as in Eq.8. Same as exp.3, the BLSTM in exp.2 only
models sub-band information. For a fair comparison, the number of
parameters and computational complexity of the models in the four
experiments was essentially the same, and all use a window length of
25 ms and a frame shift of 6.25 ms to extract frames. Therefore, the
system latency is also essentially the same for all four experiments.

Table 2. Ablation analysis results on the VCTK+DEMAND dataset

Method WB-PESQ STOI

CED + Dual-path former 2.97 0.95
STFT + CED + BLSTM 3.05 0.95
STFT + CED + Sub-band former 3.20 0.95
STFT + CED + Full-sub former 3.33 0.96

By comparing exp.2 and exp.3, we can see that the improved
transformer performs better than BLTSM, which demonstrates the
effectiveness of the improved transformer. Furthermore, exp.4 out-
performs exp.3, proving the advantages of fusing sub-band infor-
mation and full-band information. In both exp./ and exp.4, the intra
transformer and inter transformer in the dual-path transformer model

local and global information, respectively. However, the evaluation
results of exp.4 is much better than those of exp. /, which proves that
the frequency domain feature is more effective than the time domain
feature for the dual-path transformer.

5.3. Results on the DNS dataset

Table 3 compares the metric scores of the proposed model with
those of other architectures on the DNS dataset. We can see that
our method outperforms the baseline. We noticed that compared
with the full-band model, the proposed model has a more significant
performance improvement on the reverberation data. We also see a
similar trend in FullSubNet. The possible reason is that the full-band
and sub-band fusion models include a sub-band model, and the sub-
band model helps to model reverberation effects by focusing on the
temporal evolution of the narrow-band spectrum.

Table 3. Comparison with other state-of-the-art systems on the DNS
with_reverb (no_reverb) test sets.

Method WB-PESQ  STOI(%)  SI-SDR (dB)
Noisy 1.82(1.58) 86.62(91.52)  9.03 (9.07)
NSNet [20] 237 (2.15)  90.43 (94.47)  14.72 (15.61)
DTLN [32] - 84.68 (94.76)  10.53 (16.34)
PoCoNet [33]  2.83 (2.75) -() -()
FullSubNet[7] 2.97 (2.78) 92.62 (96.11)  15.75 (17.29)
CTS-Net[8]  3.02(2.94) 92.70 (96.66)  15.58 (17.99)
GaGNet[34] -(3.17) - (97.13) - (18.91)
DPT-FSNet  3.53(3.26) 95.23 (97.68)  18.14 (20.36)

6. CONCLUSIONS

In this paper, we propose a dual-path transformer-based full-band
and sub-band fusion network for speech enhancement in the fre-
quency domain. Inspired by the full-band and sub-band fusion mod-
els, we explore features that are more efficient for dual-path struc-
tures with the intra part in the dual-path transformer models the sub-
band information, and the inter part models the full-band informa-
tion. Experimental results on the Voice Bank + DEMAND dataset
and DNS dataset show that the proposed method outperforms the
current state of the art at a relatively small model size.
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