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ABSTRACT
Advances in biosignal signal processing and machine learning, in
particular Deep Neural Networks (DNNs), have paved the way
for the development of innovative Human-Machine Interfaces for
decoding the human intent and controlling artificial limbs. DNN
models have shown promising results with respect to other al-
gorithms for decoding muscle electrical activity, especially for
recognition of hand gestures. Such data-driven models, however,
have been challenged by their need for a large number of trainable
parameters and their structural complexity. Here we propose the
novel Temporal Convolutions-based Hand Gesture Recognition ar-
chitecture (TC-HGR) to reduce this computational burden. With this
approach, we classified 17 hand gestures via surface Electromyo-
gram (sEMG) signals by the adoption of attention mechanisms
and temporal convolutions. The proposed method led to 81.65%
and 80.72% classification accuracy for window sizes of 300ms
and 200ms, respectively. The number of parameters to train the
proposed TC-HGR architecture is 11.9 times less than that of its
state-of-the-art counterpart.

Index Terms— Attention Mechanism, Temporal Convolutions,
surface Electromyogram, Hand Gesture Recognition.

1. INTRODUCTION
Hand gesture recognition via surface Electromyogram (sEMG) sig-
nals [1–5] has been investigated in the literature as the most promis-
ing approach for myoelectric control of prosthetic systems. In partic-
ular, Hand Gesture Recognition (HGR) has been the focus of differ-
ent research works [6, 7], given its unique potentials to improve the
quality of control and consequently to enhance the quality of life of
amputees. Although academic researchers have used advanced Ma-
chine Learning (ML) and Deep Neural Network (DNN) models to
achieve promising laboratory results in HGR, translating these new
techniques into the daily lives of amputees has faced several criti-
cal challenges [8,9]. One of the key challenges is the dependency of
DNN models on a large number of trainable parameters, which leads
to structural complexity and limits their applicability to clinical set-
tings [10]. Therefore, there is an urgent and unmet quest to develop
DNN-based learning frameworks that focus on reducing the number
of parameters and maintaining high performance.

The performance of DNN models developed based on sparse
multi-channel sEMG is still significantly lower than that of High-
Density sEMG (HD-sEMG) systems which has a high number
of densely located electrodes to significantly increase the infor-
mation rate [11–13]. For instance, in Reference [12], the HGR
accuracy of 99.7% is reported using HD-sEMG, which is re-
duced to 84.4% when sparse multi-channel sEMG signals are

used. In this context, we aim to design a novel DNN architec-
ture using sparse multi-channel sEMG signals provided by the
Ninapro [14,15] database, which is one of the most widely accepted
sparse multi-channel sEMG benchmark datasets. We designed the
novel Temporal Convolutions-Hand Gesture Recognition architec-
ture (TC-HGR) to reduce computational burden while maintaining
high accuracy, which is of paramount importance to translate the
classification results into smooth actions.

A common strategy for classifying hand movements with
DNN-based algorithms is converting sEMG signals into images
and then using Convolutional Neural Networks (CNNs) to detect
hand movements [11, 12, 16, 17]. sEMG signals are, however, se-
quential in nature, and CNNs cannot extract temporal features. In
this regard, recent literature [10, 13] used recurrent architectures
such as Long Short Term Memory (LSTM) networks to consider
the sequential nature of sEMG signals. In addition, LSTMs and
CNNs can be combined as a hybrid architecture [6] to jointly
extract the temporal and spatial properties of sEMG signals. Al-
though sequence modeling with recurrent networks is a common
approach, it can have disadvantages, such as lack of parallelism
during training, exploding/vanishing gradient, and extensive mem-
ory/computation requirements [18]. Therefore, Reference [18] pro-
posed Temporal Convolutions (TCs) for extracting temporal infor-
mation in time series tasks while addressing the aforementioned
challenges of the recurrent architectures. In addition Reference [10]
proposed the concept of temporal dilation of LSTM to reduce the
computational cost, memory, requirement, and model complexity.
On the other hand, attention-based architectures such as Trans-
formers [19, 20] show great potentials for widespread adoption in
different Artificial Intelligence (AI) applications. In particular, the
transformer-based architectures could improve the recognition accu-
racy compared to their state-of-the-art counterparts (where LSTM or
hybrid LSTM-CNN are adopted). However, transformers are limited
by the memory and computation requirements of the quadratic oper-
ation in attention for long sequences or images. Therefore, in [19],
the authors proposed dividing the images into patches and then using
the flattened patches as the input for the transformers. Inspired by the
progress of attention mechanism and TCs, recent literature [1,21,22]
proposed a Few-shot learning architecture, which is based on the
combination of attention and temporal convolutions.

In this paper, to address the challenges with recurrent architec-
tures and achieve high accuracy for sparse multichannel sEMG, we
proposed the design of the TC-HGR, which is based on TCs and
attention mechanism. More specifically, TCs use the dilated causal
convolutions, which can increase the receptive field of the network
and extract the temporal features of the sEMG signals. Moreover, by
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inspiring from [19], we divided the sEMG signals into patches to re-
duce the computational cost. The contributions of the paper can be
summarized as follows:

• The TC-HGR framework is proposed based on self-attention
mechanism and temporal convolution to address the afore-
mentioned challenges with the recurrent architectures.

• The TC-HGR reduces the number of parameters, which is a
key step forward to embed the DNN models into prostheses
controllers.

• The TC-HGR divides the sEMG signals into patches, which
reduces the computational burden of the system.

• The TC-HGR can access a long history through temporal con-
volutions and also can pinpoint specific information in the
sEMG signals through the attention mechanism.

2. THE PROPOSED TC-HGR ARCHITECTURE
Developing a DNN architecture with fewer parameters can tackle
the challenge of structural complexity and reduce the gap between
academic research and practical settings for myoelectric prosthesis
control. In what follows, first, we present the pre-processing step of
the proposed TC-HGR and then present its detailed architecture.

2.1. Preprocessing Step
For developing TC-HGR architecture, we used the raw time-domain
sEMG signals. Following the recent literature [11, 15, 23, 24], the
sEMG signals are pre-processed and smoothed using a 1st order
low-pass Butterworth filter. Moreover, to amplify the magnitude of
sensors with small values, we scaled the sEMG signals logarithmi-
cally [2]. This technique is known as µ-law transformation and is
used for quantization in the speech domain. However, we use it for
normalizing the sEMG signals, i.e.,

F (xt) = sign(xt)
ln

(
1 + µ|xt|

)
ln

(
1 + µ

) , (1)

where t represents the time; xt shows the sEMG signal, and µ is the
parameter that indicates the new range. In Reference [2], the authors
showed that scaling sEMG signals with µ-law technique results in
better performance than normalizing with Minmax. This completes
the steps performed to pre-process the sEMG signals and prepare the
input to be provided to the TC-HGR architecture. Next, we present
the detailed structure of the proposed architecture.

2.2. The TC-HGR Architecture
In this section, the proposed TC-HGR architecture is described in
detail. After pre-processing, we segment the sEMG signals based
on a window of size W ∈ {200ms, 300ms}, resulting in the
dataset D = {(Xi, yi)}Mi=1. More specifically, Xi ∈ RC×L is
the i

th
segment with label yi, for (1 ≤ i ≤ M ). Here, C indi-

cates the number of channels in the input segment, and L is the
length of the segmented sequence, which represents the number
of samples obtained at a frequency of 2 kHz for a window of size
W . As illustrated in Fig. 1, the TC-HGR framework has been de-
veloped based on “Embedded Patches” and two modules, namely
Temporal Convolution Block and Self-Attention Module with Resid-
ual Connection, which is described below:
(i) Embedded Patches: In a similar way to the Vision Transformer
(ViT) architecture [19], the input segment Xi is divided intoN non-
overlapping patches. Here, N = L/P , where P shows the size
of each patch. This patching mechanism helps reduce memory and
computation requirements. As shown in Fig. 1, the sequence of lin-
ear projections of these patches are fed as input to the TC-HGR ar-
chitecture. More specifically, each patch is first flattened and then is
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Fig. 1: The proposed TC-HGR architecture: (a) Each input segment X
(for simplicity, we dropped the index i) is divided into N non-overlapping
patches. Then, each patch is flattened and mapped to model dimension D
(blue block). We refer to the output of this process as Embedded Patches. The
sequence of the Embedded Patches is passed into the Self-Attention module,
which includes the residual connection (purple block). Afterward, we used
Z number of Temporal Convolution Blocks to access a long history (orange
block). (b) Each Temporal Convolution Block consists of two dilated causal
convolutions, each followed by a ReLU activation function. Again, we used
residual connections to concatenate the output and input. Finally, a Linear
Layer (LL) is adopted to output the class label.

mapped into the model dimension D with a trainable linear projec-
tion. The output of this projection is called the “Embedded Patches”.
(ii) Temporal Convolution Block: In recent literature (such as [18]),
the authors represented TCs for the sequence modeling tasks and
showed that temporal convolutions could outperform recurrent net-
works such as LSTMs in a wide range of datasets and time-series
tasks. More specifically, TCs offer several advantages over recurrent
networks such as processing the input sequence as a whole rather
than sequential training, low memory requirements, stable gradi-
ent, and capturing the past information with flexible receptive field
size. Inspired by the performance of TCs for the sequential data,
we used “Temporal Convolution Block” (represented via an orange
box in Fig. 1) instead of recurrent networks for the sEMG-based
HGR. As shown in Fig. 1, each Temporal Convolution Block con-
sists of dilated causal convolutions, where the dilation rate R in-
creases exponentially, i.e., (1, 2, 4, 8, . . .), to access a receptive field
that exceeds the length of the input sequence. Moreover, each dilated
causal convolution is followed by a ReLU activation function. The
number of Temporal Convolution Blocks are based on the logarith-
mic scale with the number of patches N . More specifically, we used
Z = dlog2Ne number of Temporal Convolution Block for an input
segment X with a sequence length of L.
(iii) Self-Attention Module with Residual Connection: In the pro-
posed TC-HGR architecture, we used the “Temporal Convolution
Block” along with the “Attention” mechanism. In [20], the authors
showed that the attention mechanism allows a model to present im-
portant information in a given input sequence. Moreover, the atten-
tion mechanism has recently been used [1] in the context of sEMG-
based hand gesture recognition, where experiments have demon-
strated the ability of attention to identifying specific pieces of in-
formation in the sequential nature of the sEMG signals. On the other



Table 1: Descriptions of TC-HGR architecture variants.

Window size W Model ID Number of Patches N Model dimension D Params

200ms

1 10 12 49,186

2 10 16 68,445

3 16 12 69,076

4 16 16 94,965

300ms

1 10 12 52,066

2 10 16 72,285

3 15 12 67,651

4 15 16 92,945

Table 2: classification accuracies for TC-HGR architectures variants. The
STD denotes the standard variation in accuracy over the 40 subjects.
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Model ID 1 2 3 4

Accuracy (%) 80.29 80.63 80.51 80.72

STD (%) 6.7 6.8 6.7 6.6
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Model ID 1 2 3 4

Accuracy (%) 80.84 81.59 80.95 81.65

STD (%) 6.4 6.5 6.5 6.7

hand, in References [21, 22], it was shown that temporal convolu-
tions and attention are complementary mechanisms, i.e., the former
captures a long history while the latter identifies a specific type of
information.

An attention block measures the pairwise similarity of each
query and all keys to assign a weight to each value. Then, the output
is computed, which is the weighted sum of the values [20]. The keys,
values, and queries are packed together into matrices K, V , and Q,
respectively. The output matrix is then computed as follows

Attention(Q,K,V ) = softmax(
QKT

√
dk

)V , (2)

where dk denotes the dimension of K and Q. In the TC-HGR archi-
tecture, we also used residual connections to concatenate the output
and input. This completes the description of the proposed TC-HGR
architecture, next, we present our results to evaluate its HGR perfor-
mance.

3. EXPERIMENTS AND RESULTS
In this section, first, the database used for evaluation is described
followed by the presentation of different experiments and results.

3.1. Database
To train and evaluate the proposed TC-HGR architecture, we used
the second Ninapro dataset [15] called DB2, which is a widely used
public dataset. More specifically, DB2 is collected by the Delsys
Trigno Wireless EMG system, which has 12 channels and records
the electrical activities of muscles at 2 kHz. Moreover, the DB2
dataset consists of the sEMG signals from 40 healthy subjects (28
males and 12 females with age 29.9±3.9 years among which 34 are
right-handed and six are left-handed) performing 50 different hand

gestures. Each gesture is repeated 6 times, each lasting for 5 seconds
followed by 3 seconds of rest. The 50 different gestures in the DB2
dataset are presented in three sets of exercises (i.e., B, C, and D).
In this paper, we focus on Exercise B, which consists of 17 differ-
ent gestures. More specifically, Exercise B consists of 9 basic wrist
movements with 8 isometric and isotonic hand movements. Follow-
ing the recommendations provided by the Ninapro dataset, the train-
ing set consists of 2/3 of the repetitions of each gesture (i.e., 1, 3, 4,
and 6), and the test set consists of the remaining repetitions (i.e., 2
and 5). Please refer to [15] for a more detailed description of the
Ninapro database.

3.2. Results and Discussions
In this section, the performance of the proposed TC-HGR architec-
ture is evaluated through a comprehensive set of experiments. In Ta-
ble 1, different variants of the TC-HGR architecture are presented
based on a window size of W ∈ {200ms, 300ms}. For training,
Adam optimizer was used across all the models with a learning rate
of 0.0001. Furthermore, we used a mini-batch size of 32. The perfor-
mance of each model is evaluated using Cross-entropy loss. In Ta-
ble 2, the averaged recognition accuracy of the proposed TC-HGR
architecture and its variants are reported over all subjects. In what
follows, we focus on three different experiments:
Experiment 1 - Effect of the Model’s Dimension D: In this experi-
ment, the objective is to investigate the effect of D of the proposed
TC-HGR architecture on the recognition accuracy. In this regard,
Table 2 has shown the results for D ∈ {12, 16} for both window
sizes. From Table 1 and Table 2, it is observed that the accuracy of
the model will improve when the D is increased from 12 to 16 for
the same Number of Patches N . More specifically, “Model 2 versus
Model 1” and “Model 4 versus Model 3” are more accurate in both
the 200ms and 300ms window sizes. However, from Table 1, it can
be observed that the number of trainable parameters has increased
whenD is increased from 12 to 16, which leads to more complexity.
For instance, for W = 200ms andN = 10, Model 2 has 68, 445 pa-
rameters, while this number is 49, 186 for Model 1 (Table 1). While
increasing D can potentially improve performance, the implementa-
tion of prosthetic controllers is limited by its structural complexity.
Experiment 2 - Effect of the Number of Patches N : This experi-
ment is included to evaluate the effect of increasing N on the per-
formance of the proposed TC-HGR. From Tables 1 and 2, it is ob-
served that for the same W andD, accuracy increases as the number
of patches N increases from 10 to 16. More specifically, “Model
3 versus Model 1” and “Model 4 versus Model 2” classified the
hand gestures with higher accuracies in both window sizes. This is
because use of more patches results in a larger effective sequence
length, which in turn improves the overall performance. Increasing
the number of patches, however, makes the structure more complex.
For instance, for W = 300ms and D = 12, Model 3 has 67, 651
parameters, while Model 1 has 52, 066 parameters (Table 1).
Experiment 3 - Effect of Window size W : As shown in Table 2,
increasing the window size leads to more accuracy. This is because
the larger the window size, the more information is provided for the
proposed TC-HGR architecture. In other words, machine learning
model would have higher exposure to the signals from the gesture.
For instance, for both “Models 2 and 1”, the window size 300ms
leads to greater accuracy and complexity. However, both “Models 3
and 4” classified hand gestures more accurately while reducing the
complexity because number of patches for W = 300ms is less than
W = 200ms. Although choosing a larger window size increases
accuracy, using shorter windows (e.g., 200ms) provides extra time
(100ms) for pre-processing or post-processing tasks.



Table 3: Comparison between the proposed TC-HGR methodology and previous works [10], which used recurrent architectures (LSTM).

Reference [10]

200ms 300ms

Params Accuracy (%) Params Accuracy (%)

4-layer 3rd Order Dilation 1, 102, 801 79.0 1, 102, 801 82.4

4-layer 3rd Order Dilation (pure LSTM) 466, 944 79.7

SVM 26.9 30.7

Our Method
Model 1 49,186 80.29 52,066 80.84

Model 4 94, 965 80.72 92, 945 81.65

Fig. 2: The accuracy boxplots for all TC-HGR architecture variants for win-
dow size 300ms. Each boxplot is representing the IQR of each model across
40 users. We used Wilcoxon signed-rank to compare the model with the least
number of paramaters (i.e.,Model 1) with the remaining models; i.e., Model
2, Model 3, and Model 4. (ns: 0.05 < p-value ≤ 1, ∗ : 0.01 < p-value ≤
0.05, ∗∗ : 0.001 < p-value ≤ 0.01, ∗∗∗ : 0.0001 < p-value ≤ 0.001,
∗∗∗∗ : p-value ≤ 0.0001).

Statistical Comparisons of the Different TC-HGR Variants for
Window Size 300ms: To examine the importance and significance
of TC-HGR variants, we perform statistical tests for all models
considering W = 300ms. By following [22], the Wilcoxon signed-
rank test [25] is used in which each user is considered as a separate
dataset. As illustrated in Fig. 2, we conduct comparison between
the model with the least number of parameters (i.e., Model 1) and
other models. (i.e., Model 2, 3, and 4). Using Wilcoxon signed-rank
test, it can be mentioned that no statistical significance was observed
comparing Model 1 and Model 3 in Fig. 2. However, Model 1 is
significant versus Model 2 (or Model 4) because the p-value is less
than 0.05. Further details are provided in Fig. 2 where the p-value is
indicated by the following symbols:

• Not significant (ns): p-value is between 0.05 and 1,

• ∗ : p-value is between 0.01 and 0.05,

• ∗∗ : p-value is between 0.001 and 0.01,

• ∗∗∗ : p-value is between 0.0001 and 0.001,

• ∗∗∗∗ :p-value is smaller than 0.0001.

The performance distribution between 40 users for each model is
illustrated in Fig. 2. More specifically, each model is represented
by a boxplot in which the performance distribution is divided into
quartiles across all users (i.e., Interquartile Range (IQR)), and the
median performance is represented by a horizontal line.
Comparison with the State-of-the-art Research [10]: We have also
compared the results with a recent state-of-the-art model [10] in
which the same dataset is used for performance evaluations. More
specifically, Reference [10] proposed models based on recurrent ar-
chitectures (i.e., LSTM) with dilation. As shown in Table 3, for win-
dow size of 200ms, our methodology can outperform both recurrent
networks and traditional ML approaches such as Support Vector Ma-
chine (SVM). For instance, it can be observed that the accuracy for
our proposed Model 4 is 80.72% with only 94, 965 number of pa-
rameters, while the best accuracy for the Reference [10] is 79% with
1, 102, 801 parameters. Moreover, as shown in Table 3, for window
size of 300ms, the accuracy of the proposed Model 4 is 81.65%,
while for “pure LSTM with dilation” and SVM proposed in [10],
the accuracy is 79.9% and 30.7%, respectively. Although in [10] the
authors reached to 82.4% accuracy with “4-layer 3rd Order Dila-
tion” which is a hybrid dilation-based LSTM, they used 1, 102, 801
number of parameters which is 11.9 times larger than the number of
parameters used in our proposed Model 4. Therefore, we provided
a compact DNN model with a far fewer number of trainable param-
eters compared to previous works, and took a step forward towards
designing more proportional, intuitive, and dexterous prostheses for
clinical applications.

4. CONCLUSION
In this paper, we proposed a novel architecture referred to as the
TC-HGR for Hand Gesture Recognition from sparse multichannel
sEMG signals. The proposed model showed strong capability in ad-
dressing several existing challenges of gesture recognition based on
the temporal convolutions and attention mechanism. We showed that
by proper design of convolution-based architectures, we can extract
temporal information of the sEMG signal and improve the perfor-
mance. Moreover, the proposed architecture can reduce the required
number of trainable parameters with respect to the state-of-the-art,
which is a key enabling factor to reduce the complexity and embed
DNN-based models into prostheses controllers.
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