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ABSTRACT
Sparse Bayesian learning (SBL) is a powerful framework for
tackling the sparse coding problem. However, the most pop-
ular inference algorithms for SBL become too expensive for
high-dimensional settings, due to the need to store and com-
pute a large covariance matrix. We introduce a new inference
scheme that avoids explicit construction of the covariance ma-
trix by solving multiple linear systems in parallel to obtain the
posterior moments for SBL. Our approach couples a little-
known diagonal estimation result from numerical linear alge-
bra with the conjugate gradient algorithm. On several simu-
lations, our method scales better than existing approaches in
computation time and memory, especially for structured dic-
tionaries capable of fast matrix-vector multiplication.

Index Terms— sparse Bayesian learning, compressed
sensing, sparse coding

1. INTRODUCTION

Sparse Bayesian learning (SBL) is an effective tool for sparse
coding – the problem of identifying a small set of non-zero
dictionary coefficients to explain the variance of large data. It
forms the basis for popular models, such as sparse Bayesian
regression [1], relevance vector machines [2], and Bayesian
compressed sensing [3, 4]. It has found use in many applica-
tions, such as medical image reconstruction [5], hyperspectral
imaging [6], human pose estimation [7], and structural health
monitoring [8]. Futhermore, SBL offers several advantages
compared to other sparse coding approaches (e.g. `0 regular-
ization, `1 regularization). It provides uncertainty quantifica-
tion [2], removes the need to tune regularization penalties [4],
exhibits favorable optimization properties [9], enables active
learning [10], and can be embedded as a submodule in com-
plex generative frameworks [11, 12].

However, one often-noted limitation of sparse Bayesian
learning is the heavy computational cost of inference [2, 5].
In terms of both time and space complexity, existing inference
algorithms scale poorly to very high-dimensional problems.
Most algorithms have time complexity that is polynomial in

D, the dimension of the signal to be recovered. Unfortunately,
in many practical settings, D can be very large (≥ 105), lead-
ing to slow learning. One way to accelerate SBL inference is
to employ hardware optimized for parallel computing, such
as graphics processing units (GPUs). However, GPUs have
limited memory, while most existing SBL algorithms require
at least quadratic space, leading to memory issues for highD.

We introduce a new approach to SBL inference that is
more scalable than existing approaches for very large D. We
call our method covariance-free expectation-maximization
(CoFEM), since it circumvents the main challenge of main-
taining and inverting a D × D covariance matrix. This is
possible by leveraging tools from numerical linear algebra,
such as the diagonal estimation rule and conjugate gradient
algorithm. CoFEM has O(τD)-time complexity, where τD is
the time required for matrix-vector multiplication. This can
be as low as τD = O(D logD) for structured matrices com-
monly used in signal processing (e.g. convolution, Fourier
transform). Furthermore, CoFEM has a space complexity of
O(D), which enables further acceleration via GPUs while
ameliorating potential memory issues. In practice, CoFEM
can be up to thousands of times faster than existing baselines.1

2. BACKGROUND

2.1. Generative Model

The generative model for sparse Bayesian learning is

z ∼ N (0, diag{α}−1),
y ∼ N (Φz, 1/β I), (1)

where z ∈ RD is a sparse latent vector, y ∈ RN is an ob-
servation vector, Φ ∈ RN×D is a known dictionary, β is the
precision of the observation noise, and I is theN×N identity
matrix. Given y, the goal of SBL inference is to recover z.

The main feature of SBL is the diagonal Gaussian prior
with precision parameters α ∈ RD placed on z. SBL per-
forms type II maximum likelihood estimation by integrating

1Our code can be found at https://github.com/al5250/sparse-bayes-learn
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out z and optimizingα [13], after which one can compute the
posterior and recover sparse signals. The learning objective is

max
α

log p(y |α) = log

∫
z

p(y | z)p(z |α)dz. (2)

During optimization, many elements of α diverge to ∞.
Consequently, the independent Gaussian priors over these el-
ements of z converge to point masses on zero, forcing their
respective posteriors to do the same. Thus, after α converges,
the posterior p(z | y,α) is often highly sparse.

2.2. Existing Inference Frameworks

Inference schemes for SBL are designed to optimize Eq.
(2). The most popular algorithm is expectation-maximization
(EM) [2], which alternates between an E-Step and an M-Step
to iteratively optimize Eq. (2). Given an estimate α̂, the
E-Step computes the posterior p(z | y, α̂) ∼ N (µ,Σ) with

µ = βΣΦ>y, Σ = (βΦ>Φ + diag{α̂})−1. (3)

Then, the M-Step uses these quantities to perform the update

α̂new = 1� (µ� µ+ Σ[�]), (4)

where 1 is the D-dimensional vector of ones, and � and �
denote element-wise multiplication and division, respectively.
The notation Σ[�] ∈ RD extracts the diagonal elements of
Σ. Despite its simplicity, EM suffers from heavy time and
space complexity for large D. Specifically, the E-Step of Eq.
(3) requires O(D3) time and O(D2) space to compute Σ.

Therefore, many existing SBL frameworks aim to accel-
erate EM; our proposed method also falls into this category.
One line of work is iterative reweighted least-squares (IRLS)
[14], which inverts an N ×N covariance instead of a D×D
one. Although this can be faster when N < D, the time
complexity remains a cubic function. Another approach uses
approximate message passing (AMP). Within each E-Step,
AMP performs Tamp iterative steps to approximate means and
variances in Eq. (3) to avoid matrix inversion [15]. However,
AMP is known to diverge easily, especially for Φ that do not
satisfy zero-mean, sub-Gaussian criteria [16, 17]. AMP also
requires computation of an N ×D matrix Φ�Φ, which can
be costly. A third class of strategies uses variational inference
(VI), which approximates the true posterior p(z | y,α) with
a simpler surrogate q(z) (e.g. independent Gaussian distribu-
tions) [18, 19]. The variational E-Step can thus be simplified
and only requires O(D)-space. However, the drawback of VI
is that it optimizes a lower bound on Eq. (2) instead of the
true objective, leading to biased results.

Finally, as an alternative to EM, there is an approach based
on sequential optimization (Seq) of Eq. (2) [20]. Its complex-
ities scale with d – the number of non-zero elements of z –
instead of D. Thus, for truly sparse vectors with d� D, Seq
can be faster than EM. However, the algorithm’s sequential
nature limits the extent to which it can benefit from parallel
computing, and it still requires storage of a covariance matrix.

3. COVARIANCE-FREE EM

We introduce covariance-free EM (CoFEM), which acceler-
ates EM by obviating the need to invert or even compute the
covariance matrix Σ. We leverage tools from the numerical
linear algebra literature to accomplish this goal. The main in-
sight of CoFEM is that not all elements of Σ are required for
the M-Step in Eq. (4). Indeed, we only need µ and Σ[�] of
the posterior to update α̂. We therefore propose a simplified
E-Step that can estimate µ and Σ[�] from solutions to linear
systems. First, we can re-express Eq. (3) for µ as

Σ−1µ = βΦ>y, (5)

where Σ−1 = βΦ>Φ + diag{α̂}. Thus, µ is the solution x
to the linear system Ax = b for A := Σ−1 and b := βΦ>y.
Next, we estimate Σ[�] using the following result from [21].

3.1. Estimation of Σ[�]

Proposition (Diagonal Estimation Rule [21]). Let M be any
square matrix of size D × D. Let p1,p2, . . . ,pK ∈ RD be
K random probe vectors, where each pk has independent and
identically distributed components such that E[pk] = 0. Then
the following s is an unbiased estimator of M[�],

s =

(
K∑

k=1

pk �Mpk

)
�

(
K∑

k=1

pk � pk

)
.

We apply the diagonal estimation rule to Σ to estimate
Σ[�]. We employ the Randemacher distribution, to draw
each component of pk as either +1 or −1 with equal prob-
ability. In this case, the diagonal estimator s simplifies to

s =
1

K

K∑
k=1

pk �Σpk, (6)

where E[s] = Σ[�]. Eq. (6) indicates that we need to apply
Σ to each probe vector pk. We can compute Σpk by solving a
linear system Ax = b for x, where A := Σ−1 and b := pk.

In summary, µ and Σ[�] can be obtained by solvingK+
1 separate linear systems. These systems can be solved in
parallel by considering the matrix equation AX = B with

A := βΦ>Φ + diag{α̂},
B :=

[
p1 | p2 | . . . | pK | βΦ>y

]
. (7)

If we enumerate the columns of the solution matrix X ∈
RD×(K+1) as x1,x2, . . . ,xK ,µ, our desired quantities for
the simplified E-Step are µ and s := 1/K

∑K
k=1 pk � xk.

We can then perform the M-Step of Eq. (4) as

α̂new = 1� (µ� µ+ s), (8)

avoiding the need to compute or invert Σ. Algorithm 1 sum-
marizes the full CoFEM algorithm. Preliminary theoretical



analysis suggests that the variance of Eq. (6) scales with 1/K
[21]. In practice, we have found that small K (e.g. K = 20)
is sufficient even at high D (Section 4). We defer a detailed
theoretical discussion of the estimator to future work.

3.2. Linear Solver for CoFEM

Among potential options for the linear solver in Algorithm 1,
we use conjugate gradient (CG) for several reasons [22, 23].
CG does not require construction of the matrix A to solve
Ax = b; we just need a way to apply A to an arbitrary vector
v. Since our SBL framework defines A := Φ>Φ+ diag(α̂),
the time complexity of CG (and CoFEM) scales according to
O(τD), the time it takes to apply Φ (and Φ>) to v. For many
structured matrices used in signal processing (e.g. discrete
cosine transform, Fourier transform, wavelet transform, con-
volution), we have O(τD) = O(D logD). In addition, CG
is space-efficient and only needs O(D)-space to solve the lin-
ear system; this is the minimum requirement for any solver
given that the output x ∈ RD. Furthermore, CG easily gen-
eralizes to multiple linear systems AX = B by simply re-
placing the matrix-vector multiplications with matrix-matrix
multiplications. For accelerated computing, these operations
can be parallelized on GPUs. Finally, CG is an iterative ap-
proach that guarantees convergence to a solution within ≤ D
steps. In practice, far fewer steps are needed to find an X̂ such
that ‖AX̂−B‖F /‖B‖F < ε for small ε, where ‖·‖F denotes
Frobenius norm [23]. Thus, we can set an upper limit U � D
on the number of iterations and still obtain good performance.

3.3. Complexity Comparison

Each of the Tem iterations of CoFEM requires at most U
steps of CG – in which we apply Φ (and Φ>) in O(τD)-
time to K vectors – giving us an overall time complexity
of O(TemτDUK). CoFEM’s space complexity is dominated
by CG, which requires O(D)-space for each of the (K + 1)
systems. Table 1 shows the complexities of CoFEM and other
SBL inference schemes. While many other methods improve
upon EM, they introduce dependencies on N or d, which typ-
ically grow with D. For example, if the size of the signal z is
doubled, we may also expect the number of measurements N
to be doubled (to achieve same reconstruction error), as well
as the number d of non-zero values in z. Thus, increasing D
compounds the increase in complexities of these algorithms.
In contrast, CoFEM’s dependencies on U and K can be held
constant as D increases, which we demonstrate in Section 4.

4. EXPERIMENTS

We run a set of experiments on simulated data to compare
CoFEM against other SBL inference methods, following the
compressed sensing setup [3]. We focus on two different
types of dictionaries – dense and structured.

Algorithm 1 COVARIANCEFREEEM(y, Φ, β, Tem, K)
1: Initialize α̂← 1.
2: for t = 1, 2, . . . , Tem do
3: // Simplified E-Step
4: Define A← βΦ>Φ + diag{α̂}.
5: Draw p1,p2, . . . ,pK ∼ Randemacher distribution.
6: Define B← [p1 | p2 | . . . | pK | βΦ>y].
7: [x1 | x2 | . . . | xK | µ]← LINEARSOLVER(A,B).
8: Compute s← 1/K

∑K
k=1 pk � xk.

9: // M-Step
10: Update α̂← 1� (µ� µ+ s).
11: end for
12: return α̂,µ, s

Table 1. Comparing different SBL inference schemes.

Method Time Space
EM [2] O(TemD

3) O(D2)
IRLS [14] O(Tem(DN

2 +N3)) O(D2)
AMP [15] O(TemTampDN) O(DN)
VI [19] O(TemτD) O(D)
Seq [20] O(Dd2) O(D + d2)
CoFEM (ours) O(TemτDUK) O(DK)

4.1. Dense Dictionary

Recovery Accuracy For various undersampling factors f ∈
{1, 2, . . . , 8}, we generate a ground-truth sparse signal z∗ ∈
RD=1024 and simulate undersampled data y = Φz∗ + ε of
length N = D/f , where z∗ has d = 0.04D randomly chosen
spikes drawn from {−1,+1} with equal probability (all other
components are zero), Φ ∈ RN×D is a dense matrix drawn
fromN (0, 1), and ε ∈ RN is drawn fromN (0, σ2) with σ =
0.005 [3]. Given y and Φ, each SBL inference algorithm out-
puts a reconstructionµ after convergence. We use normalized
root mean square error (NRMSE) ‖µ− z∗‖2/‖z∗‖2× 100%
to determine performance (lower is better). We set Tem = 50
EM steps, Tamp = 10 inner AMP steps, U = 400 maximum
CG iterations, and K = 20 probe vectors. Figure 1(a) dis-
plays NRMSE vs. f for various algorithms (averaged across
25 repetitions). We note that four methods – EM, IRLS, AMP,
and CoFEM – have similar performance. On the other hand,
VI performs poorly due to optimization of a biased objective.
The sequential algorithm also deteriorates quickly for f > 4.
Computation Time We compare computation time among
the EM-based algorithms (EM, IRLS, AMP, CoFEM) for in-
creasing D. We exclude VI due to poor signal recovery per-
formance and Seq due to different optimization procedure.
We fix f = 4 and vary D = 2p for p ∈ {9, 10, . . . , 15}.
For CoFEM, we fix U = 400 and K = 20 for all D.

Figure 1(b) presents a log-log plot of the running times
for 30 EM iterations, using the dense matrix Φ. We observe
that CoFEM is faster than EM for large D. We also observe
that IRLS and AMP take slightly less time for the values ofD
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Fig. 1. Comparison of NRMSE and computation time between CoFEM and other SBL inference algorithms.

we consider, yet the gap with CoFEM closes for large D; we
attribute this to all three algorithms requiring O(DN)-time
for dense Φ, since τD = O(DN) (Table 1). We also include
the performance of CoFEM on a GPU2 to illustrate further
accelerations made possible by its low space complexity. The
other algorithms are not executable at high dimensions (i.e.
D = 215) on our GPU due to their memory requirements.
Figure 1(c) compares the convergence of CoFEM and EM
over iterations for D = 215 (the results for other D are sim-
ilar). CoFEM converges at the same rate as EM even though
CoFEM is much faster to execute. This also reflects how well
the estimated diagonal s approximates the true Σ[�].

4.2. Structured Dictionary

A dense Φ is the worst case in terms of time complexity for
CoFEM. Thus, we also experiment with a more structured Φ
for which the benefits of CoFEM are more prominent. Specif-
ically, we let Φ ∈ RN×D be an inverse discrete cosine trans-
form (DCT) followed by an undersampling mask to select
N = D/4 out ofD coordinates as observations. The true sig-
nal z∗ is a vector of DCT coefficients with d = 0.04D com-
ponents drawn from N (0, 1) (all other components are zero).
We simulate the data as y = Φz∗ + ε. The SBL algorithms
are tasked with recovering z∗ from y and Φ. For DCT, Φ
and Φ> can be applied to a vector in τD = O(D logD)-time,
making CoFEM much faster compared to the dense case.

Figure 1(d) presents a plot of computation times for vari-
ous algorithms with increasing D. VI is omitted due to poor
signal recovery. We observe that EM, IRLS, and AMP have
similar performance as in the dense case of Fig. 1(b), because

2We use a Nvidia T4 GPU with 16 GB RAM.

they do not exploit the structured form of Φ. In contrast,
CoFEM, which takes advantage of the structured dictionary
through CG, can be faster by several orders of magnitude for
large D. With GPU acceleration, CoFEM is up to thousands
of times faster than EM. Figure 1(e) presents the convergence
of CoFEM and EM for D = 215.
CoFEM vs. Seq. Due to low space complexity, both CoFEM
and Seq can handle very high-dimensional computation. For
these two algorithms, we compare the computation time re-
quired for attaining low NRMSE of 2%, since their iterations
are not directly comparable. We repeat the DCT experiment
at higher dimensions D = 2p for p = {12, 13, . . . , 18} with
more coefficients to recover (i.e. d = 0.1D). In all cases, we
fix U = 400 and K = 20. Figure 1(f) shows computation
time as a function of D. Note that D = 218 is still a realistic
scenario (e.g. standard medical images with 512 × 512 pix-
els are this size [5]). We observe that CoFEM is much faster
than Seq on both CPU and GPU for large D. For D = 218,
the GPU does not have enough memory to execute Seq, since
it requires storing a quadratically-growing covariance matrix.
CoFEM does not suffer from this issue and fully leverages the
GPU to be up to hundreds of times faster than Seq.

5. CONCLUSION

In this paper, we accelerated the EM algorithm for sparse
Bayesian learning (SBL) by developing a covariance-free EM
method (CoFEM) that avoids matrix inversion. We leveraged
tools from numerical linear algebra to efficiently scale the
algorithm to high-dimensional settings. As potential exten-
sions, we can apply CoFEM to multi-task SBL [4], block-
sparse SBL [11], and non-negative SBL [24].
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