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ABSTRACT

This paper describes the multi-query multi-head attention (MQMHA)
pooling and inter-topK penalty methods which were first proposed in
our submitted system description for VoxCeleb speaker recognition
challenge (VoxSRC) 2021. Most multi-head attention pooling mech-
anisms either attend to the whole feature through multiple heads or
attend to several split parts of the whole feature. Our proposed
MQMHA combines both these two mechanisms and gain more
diversified information. The margin-based softmax loss functions
are commonly adopted to obtain discriminative speaker representa-
tions. To further enhance the inter-class discriminability, we propose
a method that adds an extra inter-topK penalty on some confused
speakers. By adopting both the MQMHA and inter-topK penalty, we
achieved state-of-the-art performance in all of the public VoxCeleb
test sets.

Index Terms— speaker verification, speaker recognition, multi-
head attention, loss function, VoxSRC-21

1. INTRODUCTION

Speaker verification focuses on whether two utterances come from
the same speaker. Over the years, various embedding-based mod-
els have been developed to encode the utterances to an embedding
with speakers’ feature. There are two main categories of embedding-
based models. One is the conventional i-vector which estimates the
speaker representation based on Gaussian mixture model (GMM).
The other is built on a deep neural network (DNN), such as the typi-
cal x-vector [1].

Recently, the x-vector framework has proved its superiority over
the i-vector in many speaker verification tasks [2|]. After that, more
and more optimizations were proposed based on the original x-
vector architecture. For example, ResNet [3] was used to replace the
time delay neural network (TDNN) layers of x-vector [4} 5] due to
its strong ability to extract the feature. ECAPA-TDNN [6] was also
proposed as an enhanced version of x-vector and achieved a compet-
itive performance with ResNet [7]. Moreover, ECAPA-TDNN was
further enhanced by involving both 1D and 2D convolution neural
networks (CNN), named ECAPA CNN-TDNN [8]. In general, these
DNN-based architectures have four parts: (1) a backbone to encode
the acoustic features to a high-level representation, (2) a pooling
layer to map a variable sequence to a fixed-length embedding, (3)
several segment level layers to decode the hidden information and
(4) a loss function to classify different speakers and to learn a dis-
criminative speaker embedding. In this paper, we mainly focus on
the pooling layer and loss function to further enhance the perfor-
mance of speaker verification.

 Corresponding author.

For the DNN-based architecture, the pooling layer is a key com-
ponent to aggregate the variable sequence to an utterance level em-
bedding. Recently, the statistics pooling [1] has been popular to rep-
resent the speaker characteristics even if there are other alternatives,
such as higher-order statistics [9] and channel-wise correlation ma-
trix [[10]. Considering the different importance of different frames
of a sequence, many works focus on the weights of frames to ob-
tain a better segment level representation. For example, inspired by
i-vector, learnable dictionary encoding (LDE) pooling [4] and recent
Xi-vector [11]] learned the weights based on the theory of Gaussian
mixture model (GMM). Meanwhile, the simpler and more efficient
self-attention mechanism were also introduced to calculate weighted
mean and standard deviation, named attentive statistics (AS) pooling
[12]. Moreover, some multi-head mechanisms were further used to
increase the diversity of attention, such as self-attentive (SA) pool-
ing [13] and self multi-head attention (MHA) pooling [14]. How-
ever, the two typical multi-head attention pooling have a completely
different definition on heads. The SA defines the multi-head as
adding more than one group of trainable parameters and the atten-
tive weights for every head will be computed by the whole features
(we prefer to name the head as a query in this case), while the MHA
firstly splits the channels of features into several groups and then as-
signs an attentive head for each group respectively. Comparing with
the SA, the MHA makes it possible to learn weights with a part of
features. However, one single head in each group may be insuffi-
cient to capture the patterns of speaker characteristics. To address
this issue, we proposed MQMHA pooling by adding more than one
query for each group. Furthermore, inspired by channel-dependent
attentive statistics (CAS) [6, [7] pooling and vector-based SA (VSA)
pooling [[15]], we also consider assigning a unique chann channels
of one frame rather than applying the same weight on all channels.
Therefore, our proposed MQMHA is a generalized pooling structure
covering AS, MHA, SA, and VSA, etc.

Besides the pooling layer, the loss function is also important to
learn a discriminative speaker embedding. It ensures a low similarity
of different speakers and a high similarity within the same speaker.
Despite the popularity of AM-Softmax [[16}17] and AAM-Softmax
[18] in speaker verification and a great number of successes they
have made [19], the same angular margin for different speakers could
be inappropriate because some of the speakers are more difficult to
recognize than others. Recently, setting an adaptive margin for each
sample has been proposed in [20]. However, with many hard sam-
ples generated in data augmentation, tuning the range of margin can
be difficult. Different from this, since the relative strong penalty
could be expected for similar speakers, we proposed adding an extra
inter penalty to the top k negative speakers based on the original AM-
Softmax loss. On one hand, the proposed inter top k penalty is dif-
ferent from other losses which focus on inter class, such as minimum
hyper-spherical energy (MHE) [21]], in which our method focuses on



the relation between a sample and its top k closed class centers but
MHE pushes different centers to be uniformly distributed. Moreover,
our proposed inter top k penalty could be also seen as a hard proto-
type mining (HPM) method without extra sampling requirements for
it also pays more attention to similar speakers. Finally, by applying
both MQMHA and inter-topK penalty, we achieved state-of-the-art
performance in VoxCeleb tasks.

The organization of this paper is as follows: Section 2 describes
our baseline architecture based on a 34-layer ResNet. Section 3 de-
scribes two proposed methods, MQMHA and inter-topK penalty.
The experiments and results are given in the Section 4. And we
concludes this paper in the Section 5.

2. BASELINE SYSTEM

In this section, we first introduce our baseline system architecture
and then describe the training protocol. As shown in Figure[T] the
backbone of our baseline system is a modified version of the stan-
dard 34-layer ResNet, in which the kernel size of the first convo-
lution is changed to 3 and the max pooling is removed. For the
loss function, besides AM-Softmax, the k-subcenter [22]] method is
also used jointly as the basic loss function. In this case, the cosine
similarity between a sample and one center of speaker is given by
cos(0;,5) = max(||xs|| - [[Wykl]),1 < k < K, where the max
function means that the nearest center is selected and it inhibits pos-
sible noisy samples from interfering the dominant class center.

Before training, we extracted 81-dimensional log Mel filter bank
energies based on Kaldi [23]]. The window size is 25 ms, and the
frame-shift is 10 ms. 200 frames of features were extracted with-
out extra voice activation detection (VAD), and the features were
cepstral mean normalized before being fed into networks. During
training, the SGD optimizer with a momentum of 0.9 and a weight
decay of le-3 was used. We used 8 GPUs with 1,024 mini-batch and
an initial learning rate of 0.08 to train our models. As is described
above, 200 frames of each sample in one batch were adopted to avoid
over-fitting and speed up training. We adopted ReduceLROnPlateau
scheduler with a frequency of validating every 2,000 iterations, and
the patience is 2. The minimum learning rate is 1e-6, and the decay
factor is 0.1. Furthermore, the margin gradually increases from 0O to
0.2 [19]]. We used Pytorch [24] to conduct our experiments.

After the training is done, a 512-dimensional embedding could
be extracted from the linear layer and the single cosine similarity is
used to compute the score of two embeddings.

3. THE PROPOSED METHODS

3.1. Multi-query Multi-head Attention Pooling

Most attentive pooling layers pay attention to the importance of
some unique features, such as giving different frames and frequency
different contributions to a speaker representation. The multi-head
is usually used to avoid the simple pattern learned by a single head.
As described in Section 1, the SA and MHA give two different
definitions of head and the proposed MQMHA pooling combines
them to attend more patterns of the feature. Besides the definition
of head, there are also two noteworthy points in various attentive
pooling used in speaker verification. The first point is that most
attentive poolings assign a same weight to all channels of one frame
(shared case) except the recent VSA pooling. The VSA is more
like the original self-attention mechanism in which every value of
input features will have a unique attentive weight (unique case). The
other is that the attention module of most of attentive pooling has
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Fig. 1. Our baseline architecture for speaker verification. The
backbone is a modified 34-layer ResNet. The statistics pooling with
concatenating mean and stddev is used as the basic pooling layer.
The loss function is AM-Softmax with 3 sub-centers. The margin
and scale of AM-Softmax are 0.2 and 35 respectively. The frequency
dimension of input features is 81. B: the mini-batch size for training.
T: the number of frames of input features.

two linear layers but MHA only has one linear layer to reduce the
number of parameters. To evaluate the effects of these two points,
we also combine them in our proposed MQMHA method and the
final MQMHA can be described as below.

Suppose we have a backbone output O = [01, 02, ..., 07|, 0+ €
R? and each o, is split into H parts with o; = [0, 07, ..., 0], 0} €
RY/H , where H is the number of heads. For each head, it has @)
trainable queries. Then the attention weight of wy 4 is defined as:

exp(F (o))
>imexp (F(o}))
where the function F'(-) is an attention mechanism to calculate

weights and it can be composed of one linear layer or two linear
layers with a nonlinearity:
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where w, is a matrix of size dp, X ds, wp is a matrix of size dp, X dg
and w, is a matrix of size di X ds. The dj is the hidden size of the
two linear layers and it is set to 512 by default in our experiments.
The ds is the number of weight and it equals to 1 for the shared



case and dj, for the unique case. After the weights are calculated
by the attention mechanism, the representations of mean and stan-
dard deviation can be formulated as Equation (3) and Equation (@)
respectively:

T
Hh,q = Zwt,h,q ) (Ozh)T 3)
i=1

T
Oh,q = Zwt,h,q (0T - (01T — ping * Bhg “
i=1

Then we concatenate all of the sub-representations to get the ut-
terance level embedding with E,, = [fi1, fi2, ..., fir], Where jin =
[ph, 12, ... uf], and an extra attentive standard deviation E, could
be obtained from all of the oy, , with the same way. Finally, this
representation of standard deviation is concatenated with £, to en-
hance the performance. As mentioned above, the MQMHA contains
the cases of SA (H = 1,Q = 1,n = 2,ds = 1), MHA (H >
1, =1n=1ds =1),AS(H=1,Q > 1,n=2,d; = 1)
and VSA (H = 1,Q > 1,n = 2,ds = d;,). Moreover, learning
more patterns from local features and multi queries at the same time
is compatible based on the MQMHA.

3.2. Extra Inter-TopK Penalty for AM-Softmax Loss

The AM-Softmax and AAM-Softmax loss functions have been
widely used in recent speaker recognition works. However, the opti-
mization to further distinguish similar speakers could be limited due
to the same margin applied on all negative classes. To mitigate this
issue, we proposed adding extra inter-topK penalty on AM-softmax.
Given a batch with /N examples and a number of classes of C,
the formulation with adding extra inter-topK penalty based on the
AM-Softmax is given by:

1 N es~(cos€,;yyi7'm)
Lan = _Nz log C (5)
=1 gs(cosliy;mm) L SN s 0 (0 )
J=1,j#y;

where m is the original margin of AM-Softmax and s is the scalar of
magnitude. And here the cosf; ; in AM-Softmax is already replaced

by the ¢(0;, ;) to add an extra penalty m’ on inter-class:
cost;; +m' j€ argtopK (cosb;n)
1<n<Cnty; (6)
Others.

$(0:,5) =

cosb; ;

where the cosf; ; +m’ could be replaced by cos(6;,; — m’) for the
AAM-Softmax loss function. The extra penalty m' is only added for
the k closest centers to the example x;. Since the similarity between
samples and centers could be changed during training, the penalty
will not always be effective for some fixed centers. Moreover, it
will pay more attention to the confused pairs of different speakers as
training converges and the confidence of cosf;,; increases. There-
fore, this method is also a hard prototype mining method but without
extra sampling requirements.

The k in top function is an important hyperparameter which de-
termines the number of top nearest negative classes to select for each
sample. To give an analysis of this variable, we firstly transform the
Equation (5) to a form with inter-class penalty only where the nu-
merator and denominator are multiplied by e® "™ at the same time:
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Then with the different k, the averaged nix between one exam-
ple and all negative classes could be given by:
e—m B 0, 0 1] ®)
TEEMT T )
where the range of my, in terms of different k is m < nix < m+m/’.
Note that the m, will be equal to m when k = 0 and equal to m~+m’
when k = C — 1. For these two cases, this equation is equal to the
general AM-Softmax and there will be no special optimization for
hard examples. While for the other cases, there are two discrimina-
tive penalties for different negative speakers. In general, the k is not
expected to be too larger for the negative speakers with high simi-
larity are usually in the minority that it is similar to the selection of
imposters in adaptive score normalization.

4. EXPERIMENTS AND RESULTS

4.1. Training and Test Sets

The VoxCele2-dev dataset [25] was used as our training set. It con-
tains 1,092,009 utterances and 5,994 speakers in total. As the data
augmentation make the system more robust, we here adopted a 3-
fold speed augmentation [26l 27] at first to generate extra twice
speakers. Each speech segment in this dataset was perturbed by
0.9 or 1.1 factor based on the SoX speed function. Then we ob-
tained 3,276,027 utterances and 17,982 speakers. Then we also used
RIRs [28] and MUSAN [29] to create extra four augmented copies
of the original training utterances. And the data augmentation pro-
cess was based on the Kaldi VoxCeleb recipe of sre16/v2. After the
two augmentations, 16,380,135 utterances were generated to extract
acoustic features. To evaluate our proposed methods, we used five
public VoxCeleb tasks, VoxCeleb1-O, VoxCelebl-E, VoxCeleb1-H,
VoxSRC20-dev and VoxSRC21-val, which were also adopted in our
system description [30] for the VoxSRC 2021. It is worth mention-
ing that the VoxSRC20-dev and VoxSRC21-val are much harder to
recognize as the VoxSRC20-dev contains some out-of-domain utter-
ances and the VoxSRC21-val focuses on multi-lingual verification.

4.2. Results on Voxceleb Test Sets

In our experiments, the performance is evaluated using the Equal
Error Rate (EER) and the minimum Decision Cost Function (DCF)
with Cra = 1, Cpy = 1, and Pta,'rget = 0.01 or Pta'rget =
0.05 in different cases. Table [I] shows the performance of vari-
ous pooling, inter-topK loss and their combination on five test sets.
For convenience, we took the performance of VoxSRC21-val as our
benchmark. Firstly, our proposed MQMHA pooling outperformed
all the other pooling systems, showing 5.83% and 6.09% relative
improvement compared with the baseline in terms of EER and DCF
respectively. Secondly, introducing inter-topK penalty into AM-
Softmax loss reduced the EER and the DCF in all test sets, espe-
cially in VoxSRC21-val where there are more similar utterances.
The EER and the DCF decreased by 7.03% and 5.39% respectively
in comparison with the baseline. Finally, although MHA pooling
and MQMHA pooling are close in performance when applied alone,
when combined with inter-topK loss, MQMHA pooling achieved
a better result than MHA pooling, outperforming the baseline by
13.94% in EER and 10.98% in DCF.

4.3. Ablation Study of MQMHA Pooling

To evaluate the effect of head and query in the MQMHA, we con-
ducted an ablation study based on the VoxSRC21-val. As shown in



Table 1. Results of Pooling, Loss and Their Combination on Five Test Sets of VoxCeleb.

Method

VoxCeleb1-O

VoxCelebl-E

VoxCelebl-H

VoxSRC20-dev

VoxSRC21-val

EER(%) DCFy.01 EER(%) DCFy.01 EER(%) DCFy01 EER(%) DCF0s EER(%) DCFs

Baseline Statistics & AM (m=0.2) 1.0101 0.0997 1.0435 0.0962 1.7668 0.1531 2.7075 0.1380 2.9167 0.1576
AS (q=1, h=1) [12] 1.0313 0.0829 1.0224 0.0940 1.7356 0.1527 2.6863 0.1380 29317 0.1613

SA (q=2, h=1) [13] 0.9968 0.0800 1.0217 0.0924 1.7402 0.1493 2.6506 0.1339 29233 0.1572

Pooling VSA (q=2, h=1) [15] 0.9995 0.0845 1.0294 0.0924 1.7483 0.1479 2.6783 0.1333 2.8983 0.1566
MHA (g=1, h=16) [14] 0.9756 0.0840 1.0270 0.0930 1.7020 0.1467 2.6450 0.1321 2.7850 0.1503
MQMHA (q=4, h=16) 0.9465 0.0783 1.0090 0.0913 1.7099 0.1465 2.6172 0.1316 2.7467 0.1480

Loss Inter-TopK (mg,,s=0.06) 0.9783 0.0846 1.0088 0.0883 1.7060 0.1461 2.5998 0.1317 2.7117 0.1491
Combine MHA & Inter-TopK 0.9730 0.0912 1.0170 0.0892 1.6860 0.1415 2.5760 0.1297 2.5800 0.1433
MQMHA & Inter-TopK 0.9305 0.0738 0.9809 0.0879 1.6020 0.1373 2.5070 0.1246 2.5100 0.1403

Table 2] a general attentive pooling (q=1, h=1, n=1, ds=1) barely
improves the performance compared to the baseline. When we start
to increase the number of head, there is no obvious improvement
until h = 8 and the best results is obtained when h = 16. With
the number of heads continues to increase, the performance begins
to decay. It means that the features cannot be divided to too many
parts. For multi-query, the results are unstable when increasing the
number of queries and keep the head as 1. However, the improve-
ments of multi-query are significant when features are split into sev-
eral parts. As for the function to calculate the attention weight, we
do not observe better results when using two linear layers.

Table 2. Results of MQMHA on VoxSRC21-val.

Configures EER(%) DCFys
no attention (baseline) 2.9167 0.1576
g=1, h=1, n=1, ds=1 2.8850 0.1569
g=1,h=2, n=1, ds=1 2.9983 0.1717
g=1, h=4, n=1, ds=1 2.9217 0.1633
g=1,h=8, n=1, ds=1 2.8200 0.1573
g=1, h=16, n=1, ds=1 2.7850 0.1503
g=1,h=32, n=1, ds=1 2.9167 0.1585
g=2, h=1, n=1, ds=1 2.8717 0.1575
g=4, h=1, n=1, ds=1 2.9233 0.1645
g=8, h=1, n=1, ds=1 2.8983 0.1642
=2, h=16, n=1, ds=1 2.8367 0.1581
q=4, h=16, n=1, d;=1 2.7467 0.1480
g=8, h=16, n=1, ds=1 2.7767 0.1557
q=4, h=16, n=2, ds=1 2.7800 0.1532
q=4, h=16, n=2, ds=d, 2.8867 0.1551

4.4. Ablation Study of Inter-topk Penalty

For the inter-topK method, both the extra inter margin penalty m’
and the number of top nearest negative speakers k have an important
effect on the performance. As shown in Table[3] our proposed inter-
topK outperforms baseline by 7.03% in EER and 5.39% in DCF
when m’ = 0.06 and ko, = 5. Firstly, the kiop is @ more im-
portant hyperparameter than m’. As described in Equation , it

will be the general AM-Softmax case if the k is equal 0 or C' — 1.
However, simply increasing the margin from 0.20 to 0.26 does not
improve the speaker verification performance. On the other hand,
only adding extra penalty term m’ on those top k negative classes
significantly improves the system performance. The best result is
obtained when k equals 5. We also observe that k& should not be too
large e.g. k = 10 due to the fact that some negative classes may be
overly punished. Similarly, the extra penalty m’ neither should not
be too large.

Table 3. Results of Inter-TopK on VoxSRC21-val.

Configures EER(%) DCFys
m=0.20, m'=0.00 (baseline) 2.9167 0.1576
m=0.22, m'=0.00 2.9133 0.1656
m=0.24, m'=0.00 2.9200 0.1616
m=0.26, m'=0.00 3.0000 0.1719
m=0.20, m'=0.02 & kop=5 2.7550 0.1605
m=0.20, m'=0.04 & kop=5 2.7450 0.1506
m=0.20, m'=0.06 & k;,p=5 2.7117 0.1491
m=0.20, m'=0.08 & k¢0op=5 2.7233 0.1501
m=0.20, m'=0.06 & k:op=1 2.8833 0.1605
m=0.20, m'=0.06 & kiop=2 2.7633 0.1543
m=0.20, m’=0.06 & k;,p=5 2.7117 0.1491
m=0.20, m'=0.06 & kop=10 2.7617 0.1556

5. CONCLUSION

In this papaer, we proposed two methods, MQMHA pooling and
inter-topK penalty based on AM-Softmax loss function, to further
improve the performance of speaker verification. The MQMHA cal-
culates the weights of frames by not only splitting the features to
several parts along the channel axis but also assigning more than one
queries for each part. The inter-topK penalty further enhances the in-
ter class discriminability through adding an extra penalty term on top
k negative speakers. Both these two methods outperform our base-
line model. With a combination of the two methods above, our sys-
tem achieves state-of-the-art performance. The EER on VoxCelebl1-
H is 1.6020% and the corresponding minDCF is 0.1373.
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