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ABSTRACT

This work focuses on online dereverberation for hearing devices
using the weighted prediction error (WPE) algorithm. WPE filter-
ing requires an estimate of the target speech power spectral density
(PSD). Recently deep neural networks (DNNs) have been used for
this task. However, these approaches optimize the PSD estimate
which only indirectly affects the WPE output, thus potentially re-
sulting in limited dereverberation. In this paper, we propose an end-
to-end approach specialized for online processing, that directly op-
timizes the dereverberated output signal. In addition, we propose
to adapt it to the needs of different types of hearing-device users
by modifying the optimization target as well as the WPE algorithm
characteristics used in training. We show that the proposed end-
to-end approach outperforms the traditional and conventional DNN-
supported WPEs on a noise-free version of the WHAMR! dataset.

Index Terms— online algorithm, dereverberation, neural net-
work, end-to-end learning, hearing devices

1. INTRODUCTION

Communication and hearing devices require modules aiming at sup-
pressing undesired parts of the signal to improve the speech quality
and intelligibility. Reverberation is one of such distortions caused
by room acoustics, and is characterized by multiple reflections on
the room enclosures. Late reflections particularly degrade the speech
signal and may result in a reduced intelligibility [1, 2].

Many traditional approaches were proposed for dereverberation
such as spectral enhancement [3], beamforming [4], a combination
of both [5], coherence weighting [6, 7, 8], and linear-prediction
based approaches such as the weighted-prediction error (WPE) al-
gorithm [9, 10]. WPE computes an auto-regressive multi-channel
filter and applies it to a delayed group of reverberant speech frames.
The approach is able to cancel late reverberation while preserving
early reflections, thus improving speech intelligibility for normal
and hearing-aided listeners [11, 12]. WPE and its extensions have
been shown to be robust and efficient multi-channel techniques.
However, these methods require the prior estimation of the anechoic
speech power spectrum density (PSD), which is modelled for in-
stance through the speech periodogram [9], by an autoregressive
process [13] or through non-negative matrix factorization [14]. A
deep neural network (DNN) was first proposed in [15] to model
the anechoic PSD, thus avoiding the use of an iterative refinement
process.

This work has been funded by the Federal Ministry for Economic Af-
fairs and Climate Action, project 01MK20012S, AP380. The authors are
responsible for the content of this paper.

As hearing devices require to operate in real-time in variable en-
vironments, the methods implemented should be suited for frame-to-
frame online processing, as well as being adaptive to changing room
acoustics. Online adaptive approaches are based on either Kalman
filtering [16, 17] or on a recursive least squares (RLS) adapted WPE.
In this latter RLS-WPE framework, the PSD is either estimated by
recursive smoothing of the reverberant signal [18] or by a DNN [19].

In the previously cited work, the neural network was trained to-
ward PSD estimation, although the aim of the algorithm is WPE-
based dereverberation. End-to-end techniques were proposed, using
an Automatic Seech Recognition (ASR) criterion in order to refine
the front-end DNN handling e.g. speech separation [20], denois-
ing [21], or multiple tasks [22]. An end-to-end procedure for online
dereverberation and ASR based on DNN-WPE was proposed in [23].
However, for hearing devices, it is less clear which criterion reaches
optimal speech intelligibility and quality, and such performance is
highly dependent on the considered user category.

In this work, we propose to use a criterion on the WPE out-
put short-time spectrum for online dereverberation to improve in-
strumentally predicted speech intelligibility and quality. To solve
the issue of the initialization period of RLS-WPE, we design a ded-
icated training procedure taking into account the adaptive nature of
the algorithm. Finally we include a specialization toward differ-
ent hearing-device users categories: hearing-aid (HA) users on the
one hand benefiting from early reflections like normal listeners [11];
cochlear-implanted (CI) on the other hand which do not benefit from
early reflections [24].

The rest of this paper is organized as follows. In Section 2, the
online DNN-WPE dereverberation scheme is summarized, followed
by a description of the proposed end-to-end training procedure in
Section 3. The experimental setup is described in Section 4 and the
evaluation results are presented and discussed in Section 5.

2. SIGNAL MODEL AND DNN-SUPPORTED WPE
DEREVERBERATION

2.1. Signal model

In the short-time Fourier transform (STFT) domain using the
subband-filtering approximation [9], the reverberant speech x ∈ CD
is obtained at the D-microphone array by convolution of the ane-
choic speech s and the room impulse responses (RIRs)H ∈ CD×D

with length L,

xt,f =

L∑
τ=0

Hτ,fst−τ,f = dt,f + et,f + rt,f , (1)

where t denotes the time frame index and f the frequency bin, which
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we will drop when not needed. d denotes the direct path, e the early
reflections component, and r the late reverberation. The early re-
flections component ewas shown to contribute to speech quality and
intelligibility for normal and HA listeners [12] but not for CI listen-
ers, particularly in highly-reverberant scenarios [24]. Therefore, we
propose that the dereverberation objective is to retrieve ν = d+ e
for HA listeners and ν = d for CI listeners.

2.2. WPE dereverberation

In relation to the subband reverberant model in (1), the WPE algo-
rithm [9] uses an auto-regressive model to approximate the late re-
verberation r. Based on a zero-mean time-varying Gaussian model
on the STFT anechoic speech s with time-frequency dependent PSD
λt,f , a multi-channel filter G ∈ CDK×D with K taps is estimated.
This filter aims at representing the inverse of the late tail of the RIRs
H , such that the target ν can be obtained through linear prediction,
with a delay ∆ avoiding undesired short-time speech cancellations,
which also leads to preserving parts of the early reflections:

ν̂t,f = xt,f −GH
t,fXt−∆,f , (2)

whereXt−∆,f =
[
xTt−∆,f , . . . ,x

T
t−∆−K+1,f

]T ∈ CDK .
In order to obtain an adaptive and real-time capable approach,

RLS-WPE was proposed in [18], where the WPE filter G is recur-
sively updated along time:

Kt,f =
(1− α)R−1

t−1,fXt−∆,f

αλt,f + (1− α)XH
t−∆,fR

−1
t−1,fXt−∆,f

, (3)

R−1
t,f =

1

α
R−1
t−1,f −

1

α
Kt,fX

T
t−∆,fR

−1
t−1,f , (4)

Gt,f = Gt−1,f +Kt,f (xt,f −GH
t−1,fXt−∆,f )H . (5)

K ∈ CDK is the Kalman gain, R ∈ CDK×DK the covariance of
the delayed reverberant signal buffer Xt−∆,f weighted by the PSD
λ, and α the forgetting factor.

2.3. DNN-based PSD estimation

The anechoic speech PSD λt,f is estimated at each time step t, either
by recursive smoothing of the reverberant periodogram [18] or with
help of a DNN [19]. A block diagram of the DNN-WPE algorithm as
proposed in [19] is given in Figure 1. In this approach, the channel-
averaged magnitude frame |x̄t| is fed as input to a recurrent neural
network with state ht and the output is a target speech maskM(ν)

t,f .
The PSD estimate is then obtained by time-frequency masking:

λ̂t,f = (M(ν)
t,f � |x̄t,f |)

2. (6)

The DNN is optimized with a mean-squared error criterion on
the masked output in [15, 19]. In contrast, we propose to use the
Kullback-Leibler (KL) divergence as it led to better results:

LDNN-WPE = KL(M(ν)
t,f � |x̄t,f |, |νt,f |). (7)

The training objective LDNN-WPE does not match the output ν̂
of the whole algorithm, thus potentially limiting the dereverberation
performance.
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Fig. 1. DNN-supported online WPE dereverberation. Blue blocks
refer to trainable neural network layers. Yellow blocks represents

adaptive statistical signal processing

3. PROPOSED END-TO-END TRAINING PROCEDURE
FOR ONLINE DEREVERBERATION OPTIMALITY

3.1. End-to-end criterion and objectives

Here we propose an end-to-end training procedure where the op-
timization criterion is placed at the output of the DNN-WPE algo-
rithm. The objective is to include the back-end WPE into the compu-
tations through which the loss will be backpropagated during train-
ing:

LE2E = KL(|ν̂t,f |, |νt,f |). (8)

In contrast to [23], no ASR criterion is used here. Instead, the
loss is computed in the time-frequency domain. This enables us to
take different targets and WPE parameters into consideration, for
customizing the approach towards different hearing-device user cat-
egories. Namely, for HA listeners, where early reflections are con-
sidered beneficial [12], we set the training target to ν = d + e and
we use a larger prediction delay ∆HA. For CI listeners, for which
early reflections may be harmful [24], we set ν = d and we use a
shorter delay ∆CI < ∆HA to remove as much of the early component
as possible given the delayed linear prediction model (5).

3.2. Initialization period

As all operations in RLS-WPE are differentiable, we can use back-
propagation through the whole WPE algorithm. However, an impor-
tant practical aspect of this study focuses on handling the initializa-
tion period of the RLS-WPE algorithm. During this interval of L
time frames, the filterG has not yet converged to a stable value, and
the resulting dereverberation performance is suboptimal, as we will
show it in the experiments (see Section 5).

Therefore, rather than relying on a hypothetical shortening of
this period through implicit PSD optimization [23], we choose to
exclude this initialization period from training, which leads us to
design the procedure as given in Algorithm 1. Finally, we investigate
using a pretrained DNN, trained on the same dataset with the loss
function (7), and plugging it into Algorithm 1 for fine-tuning.



Algorithm 1 End-to-End Training Procedure
1: Extract STFT of given sequence
2: Segment sequence in N segments of size L
3: for n ∈ {0 . . . N − 1} do

4: if n = 0 then . Initialization period
5: Initialize LSTM state h(0)

0 = 0

6: Initialize WPE statistics

G
(0)
0,f = 0 , (R−1)

(0)
0,f = I

7: for t ∈ {0 . . . L− 1} do
8: Compute êt,f with one pass of DNN-WPE

9: if n > 0 then . After initialization
10: Initialize LSTM state h(n)

0 = h
(n−1)
L−1

11: Initialize WPE statistics

G
(n)
0,f = G

(n−1)
L−1,f , (R−1)

(n)
0,f = (R−1)

(n−1)
L−1,f

12: for t ∈ {0 . . . L− 1} do
13: Compute êt,f with one pass of DNN-WPE

14: Backpropagate loss (8) through time on n
15: Repeat [13:] to re-update h(n)

L−1,G
(n)
L−1,f

4. EXPERIMENTAL SETUP

4.1. Dataset generation

The data generation is inspired from the WHAMR! dataset [25] and
uses anechoic speech utterances from the WSJ0 dataset. As the ini-
tialization time L typically corresponds to 4 seconds when using a
forgetting factor of α = 0.99, we concatenate utterances belonging
to the same speaker and construct sequences of approximately 20
seconds. Within each sequence, permutations of the utterances are
used to create several versions of the sequence, so as not to lose too
much data since the first segment is never used for optimization.

These sequences are convolved with 2-channel RIRs generated
with the RAZR engine [26] and randomly picked. Each RIR is gen-
erated by uniformly sampling room acoustics parameters as in [25]
and a T60 reverberation time between 0.4 and 1.0 seconds. As tar-
get data for the HA case, the first 40 ms of the RIR is convolved
with the utterance, representing the direct path and the early reflec-
tions, whereas for the CI scenario, only the direct path is retained.
Each training set consists of approximately 55 hours of speech data
sampled at 16 kHz.

4.2. Hyperparameter settings

All approaches are trained by backpropagating the KL divergence
through time, using the Adam optimizer with a learning rate of 10−4,
exponentially decreasing by a factor of 0.96 at every epoch. Early
stopping with a patience of 10 epochs and mini-batches size of 128
segments are used. The STFT uses a square-rooted Hann window of
32 ms and a 75 % overlap, and segments of L = 4 s are constructed.

The WPE filter length is set to K = 10 STFT frames (∼ 80ms)
as our goal is to focus on the beginning of the reverberation tail,
where most of the reverberant energy lies. Another reason is that the
WPE computational complexity globally increases with the square
of K, making end-to-end training longer and more unstable.

Initialization (4.0 s) After initialization
ELR PESQ ESTOI SDR ELR PESQ ESTOI SDR

Unprocessed 2.9 2.29 0.61 4.0 2.9 2.26 0.61 3.9
Oracle-WPE-HA 3.0 2.49 0.65 6.5 7.6 2.83 0.77 7.0

Table 1. Oracle WPE dereverberation performance during and after
the initialization period. HA scenario. For all metrics, the higher

the better. T60 ∈ [0.4, 1.0]

The number of channels is D = 2, the adaptation factor α =
0.99 and the delays ∆HA = 5 frames for the HA scenario and ∆CI =
3 frames for the CI scenario. Those delay values are picked as they
experimentally provide optimal evaluation metrics when comparing
the corresponding target to the output of WPE when using the or-
acle PSD. This setting allows to obtain a real-time factor - defined
as the ratio between the time needed to process an utterance and the
length of the utterance - below 0.1 with all computations performed
on a Nvidia GeForce RTX 2080Ti GPU. A simple decision criterion
is used to prevent WPE from updating filter values when the input
speech power goes below −30 dB, corresponding to speech pauses.
Updating the filter with a clean PSD estimated during speech ab-
sence indeed provides poor performance as speech resumes.

The DNN used in [19] is composed of a single long-short term
memory (LSTM) layer with 512 units followed by two linear lay-
ers with rectified linear activations (ReLU), and a linear output layer
with sigmoid activation. We remove the two ReLU-activated layers
in our experiments, as it did not degrade the dereverberation perfor-
mance, while reducing by 75 % the number of trainable parameters.

4.3. Compared algorithms

The algorithms evaluated are:

• RLS-WPE using the target PSD (Oracle-WPE)
• Classical RLS-WPE (Vanilla-WPE)[18]
• DNN-supported RLS-WPE (DNN-WPE) [19]
• Proposed end-to-end RLS-WPE (E2E-WPE)
• Proposed pretrained E2E-WPE (E2E-WPE-p)

The suffixes HA and CI correspond to the hearing-aided and
cochlear-implanted scenarios, respectively.

4.4. Evaluation metrics

We evaluate all approaches on the described test sets. The evaluation
is conducted in terms of early-to-late reverberation ratio (ELR) [27],
perceptual evaluation of speech quality (PESQ), extended short-time
objective intelligibility (ESTOI) [28] and signal-to-distortion ratio
(SDR) [29]. The ELR computation uses a separation time of 40 ms,
and is not applicable to evaluating the CI scenario since the target is
the direct path only.

5. RESULTS AND DISCUSSION

We first evaluate the Oracle-WPE approach in the HA scenario, over
the first 4 seconds interval and after. As indicated in Table 1, WPE
performance is substantially worse when the filter is not fully initial-
ized. In all further experiments, this initialization period is excluded
from evaluation. We then compare the mentioned approaches in the
HA scenario (Table 2) and the CI scenario (Table 3).

We notice that for all T60 and scenarios, the proposed E2E-WPE-
p outperforms its DNN-WPE and Vanilla-WPE counterparts on all
metrics. This shows that taking the WPE dereverberation algorithm



0.4 −→ 0.6 0.6 −→ 0.8 0.8 −→ 1.0 Average
ELR PESQ ESTOI SDR ELR PESQ ESTOI SDR ELR PESQ ESTOI SDR ELR PESQ ESTOI SDR

Unprocessed 4.9 2.49 0.70 2.8 2.2 2.22 0.59 0.2 0.3 2.04 0.51 -1.6 2.5 2.25 0.60 0.5
Oracle-WPE-HA 11.0 3.19 0.85 5.8 7.0 2.77 0.77 2.8 4.7 2.52 0.70 0.9 7.6 2.83 0.77 3.2
Vanilla-WPE 11.5 3.00 0.84 6.4 8.2 2.63 0.75 4.0 6.0 2.41 0.68 2.3 8.6 2.68 0.76 4.2
DNN-WPE-HA 11.3 3.06 0.85 6.1 7.5 2.67 0.76 3.4 5.1 2.43 0.69 1.5 8.0 2.72 0.77 3.7
E2E-WPE-HA 13.5 3.00 0.84 6.8 9.9 2.68 0.77 4.6 7.4 2.46 0.70 3.0 10.3 2.71 0.77 4.8
E2E-WPE-p-HA 13.7 3.07 0.86 6.9 10.6 2.73 0.78 4.7 7.8 2.49 0.71 3.1 10.5 2.76 0.78 4.9

Table 2. Evaluation results on the HA test set, for different T60 reverberation times indicated on the top row in seconds. For all metrics, the
higher the better. Best performance is indicated in bold.

0.4 −→ 0.6 0.6 −→ 0.8 0.8 −→ 1.0 Average
ELR PESQ ESTOI SDR ELR PESQ ESTOI SDR ELR PESQ ESTOI SDR ELR PESQ ESTOI SDR

Unprocessed - 2.29 0.58 -8.8 - 2.05 0.49 -10.4 - 1.89 0.42 -11.6 - 2.08 0.50 -10.3
Oracle-WPE-CI - 2.91 0.76 -6.3 - 2.57 0.68 -8.1 - 2.36 0.61 -9.3 - 2.61 0.68 -7.9
Vanilla-WPE - 2.71 0.72 -6.3 - 2.41 0.64 -7.6 - 2.21 0.58 -8.7 - 2.44 0.65 -7.6
DNN-WPE-CI - 2.74 0.73 -6.7 - 2.43 0.65 -8.4 - 2.23 0.59 -9.6 - 2.47 0.66 -8.2
E2E-WPE-CI - 2.79 0.75 -6.0 - 2.49 0.68 -7.4 - 2.28 0.62 -8.4 - 2.52 0.68 -7.3
E2E-WPE-p-CI - 2.83 0.76 -6.2 - 2.53 0.69 -7.6 - 2.32 0.63 -8.6 - 2.56 0.69 -7.4

Table 3. Evaluation results on CI test set, for different T60 reverberation times indicated on the top row in seconds. For all metrics, the higher
the better. Best performance is indicated in bold.
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Fig. 2. Log-energy spectrograms of clean, reverberant and
processed signals. Dirac impulse following an utterance.

T60 = 0.75s.

into account in the DNN optimization process allows the approach
to reach an improved output result, without adding any computation
nor prior information at test time. We notice that on all metrics ex-
cept PESQ, the E2E-WPE-p approach performs even slightly better
than Oracle-WPE. Our interpretation is that through the end-to-end
training procedure, the network does not try to produce an optimal
PSD but rather an optimal output. Thus it implicitly modifies the
probabilistic nature of the parameter λt,f , which then plays the role
of a regularizer in (3) rather than that of a variance. Possible expla-
nations are that it either relaxes the Gaussian assumption on the ane-
choic speech s [9] or corrects the bias in estimating the time-varying
PSD via the periodogram in (6). As can be seen in Table 2, using a
pretrained DNN significantly helps improving the performance.

Although a filter length ofK = 10 frames and a delay of ∆ = 5

frames (in the HA scenario) only permits to fully cancel reverbera-
tion up to 120 ms, all approaches achieve significant dereverbera-
tion for T60 up to 1.0s. Indeed, the reverberation energy decaying
approximately exponentially [1], the major part of it resides in the
beginning of the reverberation tail. Therefore, although we perceive
remains of late reverberation, the objective results are good, espe-
cially for the ELR metric which highly reflects this phenomenon.

This contrast between objective improvement and residual rever-
beration is emphasized with the proposed E2E-WPE(-p) approaches.
This is shown in Figure 2 where an utterance is used to initialize the
DNN and WPE statistics and a Dirac impulse is added following 1
second of silence. We notice that the speech contains less short and
moderate reverberant energy, yielding a good ELR improvement al-
though some residual late reverberation is present. This is also in
line with our informal listening experiments. With the DNN-WPE
and Vanilla-WPE approaches, the late reverberation is less identi-
fiable as it is obfuscated by the energy remaining in the short and
moderate reverberation through the time-masking phenomenon.

Several approaches to further improve the results may be consid-
ered, for instance noise reduction post-processing. As residual late
reverberation is perceptually close to noise, it would potentially be
a good target for such methods. This is preferred to increasing the
prediction filter length of our approach, which results in industrious
training while still being unable to cancel very long reverberation.

6. CONCLUSION

We proposed an end-to-end training procedure of the DNN-supported
WPE dereverberation algorithm based on [19]. The traditional sig-
nal processing computations were included into the training of the
neural network estimating the anechoic speech PSD. This allowed
for specialized training with respect to needs of different listener
categories, by letting the network learn customized WPE parameters
and targets. Results show that this training procedure improved
the dereverberation performance without extra computational cost.
The approach suppressed most of the reverberation energy imme-
diately following the early reflections, and could be combined with
subsequent post-filtering for removing residual late reverberation.
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