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ABSTRACT

Since the first end-to-end neural coreference resolution model
was introduced, many extensions to the model have been pro-
posed, ranging from using higher-order inference to directly
optimizing evaluation metrics using reinforcement learning.
Despite improving the coreference resolution performance by
a large margin, these extensions add substantial extra com-
plexity to the original model. Motivated by this observation
and the recent advances in pre-trained Transformer language
models, we propose a simple yet effective baseline for coref-
erence resolution. Even though our model is a simplified
version of the original neural coreference resolution model,
it achieves impressive performance, outperforming all recent
extended works on the public English OntoNotes benchmark.
Our work provides evidence for the necessity of carefully jus-
tifying the complexity of existing or newly proposed models,
as introducing a conceptual or practical simplification to an
existing model can still yield competitive results.

Index Terms— Natural Language Processing, Corefer-
ence Resolution, Transformer Language Models

1. INTRODUCTION

Coreference resolution is the task of clustering mentions in
text that refer to the same entities [1] (Figure 1). As a funda-
mental task of natural language processing, coreference res-
olution can be an essential component for many downstream
applications. Many traditional coreference resolution systems
are pipelined systems, each consists of two separate com-
ponents: (1) a mention detector for identifying entity men-
tions from text (2) a coreference resolver for clustering the
extracted mentions [2, 3, 4, 5, 6]. These models typically rely
heavily on syntatic parsers and use highly engineered mention
proposal algorithms.

In 2017, the first end-to-end coreference resolution model
named e2e-coref was proposed [7]. It outperforms pre-
vious pipelined systems without using any syntactic parser
or complicated hand-engineered features. Since then, many
extensions to the e2e-coref model have been introduced,

Fig. 1. An example of coreference resolution. There are two
coreference chains in this example.

Fig. 2. An overview of coreference resolution research in the
last decade. Pipelined systems were heavily used before the
introduction of e2e-coref. Since 2017, various extensions
to the model have been proposed.

ranging from using higher-order inference to directly optimiz-
ing evaluation metrics using reinforcement learning [8, 9, 10,
11, 12, 13, 14, 15] (Figure 2). Despite improving the coref-
erence resolution performance by a large margin, these ex-
tensions add a lot of extra complexity to the original model.
Motivated by this observation and the recent advances in pre-
trained Transformer language models, we propose a simple
yet effective baseline for coreference resolution. We intro-
duce simplifications to the original e2e-coref model, cre-
ating a conceptually simpler model for coreference resolution.
Despite its simplicity, our model outperforms all aforemen-
tioned methods on the public English OntoNotes benchmark.
Our work provides evidence for the necessity of carefully jus-
tifying the complexity of existing or newly proposed models,
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Fig. 3. A high level overview of our proposed model for
coreference resolution.

as introducing a conceptual or practical simplification to an
existing model can still yield competitive results. The find-
ings of our work agree with the results of several recent stud-
ies [16, 17, 18].

2. METHOD

At a high level, our coreference resolution model is similar
to the e2e-coref model (Figure 3). Given a sequence of
tokens from an input document, the model first forms a con-
textualized representation for each token using a Transformer-
based encoder. After that, all the spans (up to a certain length)
in the document are enumerated. The model then assigns a
score to each candidate span indicating whether the span is
an entity mention. A portion of top-scoring spans is extracted
and fed to the next stage where the model predicts distribu-
tions over possible antecedents for each extracted span. The
final coreference clusters can be naturally constructed from
the antecedent predictions. In the following subsections, we
go into more specific details.

2.1. Notations and Preliminaries

Given an input document D = (t1, t2, ..., tn) consisting of
n tokens, the total number of possible text spans is N =
n(n + 1)/2. For each span i, we denote the start and end

Fig. 4. An example illustrating the strategy of concatenating
the speaker’s name with the corresponding utterance (assum-
ing the model utilizes WordPiece for tokenization).

indices of the span by START(i) and END(i) respectively.
We also assume an ordering of the spans based on START(i);
spans with the same start index are ordered by END(i). Fur-
thermore, we only consider spans that are entirely within a
sentence and limit spans to a max length of L.

Since the speaker information is known to contain useful
information for coreference resolution, it has been extensively
used in previous works [3, 7, 9, 13, 15]. For example, the orig-
inal e2e-coref model converts speaker information into
binary features indicating whether two candidate mentions
are from the same speaker. In this work, we employ a more in-
tuitive strategy that directly concatenates the speaker’s name
with the corresponding utterance [19]. This straightforward
strategy is simple to implement and has been shown to be
more effective than the feature-based method [19]. Figure 4
illustrates the concatenation strategy.

2.2. Encoder Layer

Given the input documentD = (t1, t2, ..., tn), the model sim-
ply forms a contextualized representation for each input to-
ken, using a Transformer-based encoder such as BERT [20]
or SpanBERT [15]. These pretrained language models typ-
ically can only run on sequences with at most 512 tokens.
Therefore, to encode a long document (i.e., n > 512), we
split the document into overlapping segments by creating a
n-sized segment after every n/2 tokens. These segments are
then passed on to the Transformer-based encoder indepen-
dently. The final token representations are derived by tak-
ing the token representations with maximum context. Let
X = (x1, x2, ..., xn) be the output of the Transformer encoder.

Note that the e2e-coref model uses the GloVe and
Turian embeddings [21, 22] and character embeddings pro-
duced by 1-dimensional convolution neural networks. From
an implementation point of view, it is easier to use a Trans-
former encoder than combining these traditional embeddings.



For example, the Transformers library1 allows users to
experiment with various state-of-the-art Transformer-based
models by simply writing few lines of code.

Now, for each span i, its span representation gi is defined
as:

gi =
[
xSTART(i), xEND(i), x̂i

]
(1)

where xSTART(i) and xEND(i) are the boundary representations,
consisting of the first and the last token representations of the
span i. And x̂i is computed using an attention mechanism
[23] as follows:

αt = FFNNα(xt)

βi,t =
exp (αt)

END(i)∑
j=START(i)

exp (αj)

x̂i =
END(i)∑

j=START(i)

βi,j xj

(2)

where FFNNα is a multi-layer feedforward neural network
that maps each token-level representation xt into an unnor-
malized attention score. x̂i is a weighted sum of token vec-
tors in the span i. Our span representation generation process
closely follows that of e2e-coref. However, a simplifica-
tion we make is that we do not include any additional features
such as the size of span i in its representation gi.

2.3. Mentions Extractor Layer

In this layer, we first enumerate all the spans (up to a certain
length L) in the document. For each span i, we simply use a
feedforward neural network FFNNm to compute its mention
score:

sm(i) = FFNNm(gi) (3)

After this step, we only keep up to λn spans with the highest
mention scores. In previous works, to maintain a high recall
of gold mentions, λ is typically set to be 0.4 [7, 9]. These
works do not directly train the mention extractor: The men-
tion extractor and the mention linker are jointly trained to only
maximize the marginal likelihood of gold antecedent spans.

In coreference resolution datasets such as the OntoNotes
benchmark [24], singleton mentions are not explicitly labeled,
because the annotations contain only mentions that belong
to a coreference chain. However, these annotations of non-
singleton mentions can still provide useful signals for train-
ing an efficient mention extractor [8]. Thus, we also propose
to pre-train our mention extractor using these annotations.
In Section 3, we will empirically demonstrate that this pre-
training step greatly improves the performance of our mention
extractor layer. As a result, we only need to set the parameter

1https://github.com/huggingface/transformers

λ to be 0.25 in order to maintain a high recall of gold men-
tions. To this end, the pretraining loss is calculated as follows:

Ldetect(i) = yi log ŷi + (1− yi) log (1− ŷi)

Ldetect = −
∑
i∈ S

Ldetect(i)
(4)

where ŷi = sigmoid(sm(i)), and yi = 1 if and only if the
span i is a mention in one of the coreference chains. S is the
set of the top scoring spans (and so |S| ≤ λn).

2.4. Mentions Linker Layer

For each span i extracted by the mention extractor, the men-
tion linker needs to assign an antecedent ai from all preceding
spans or a dummy antecedent ε: ai ∈ Y (i) = {ε, 1, . . . , i−1}
(the ordering of spans was discussed in Subsection 2.1). The
dummy antecedent ε represents two possible cases. One case
is the span itself is not an entity mention. The other case is
the span is an entity mention but it is not coreferent with any
previous span extracted by the mention extractor.

The coreference score s(i, j) of two spans i and j is com-
puted as follows:

sa(i, j) = FFNNa
([

gi, gj , gi ◦ gj
])

s(i, j) = sm(i) + sm(j) + sa(i, j)
(5)

where FFNNa is a feedforward network. sm(i) and sm(j)
are calculated using Equation 3. The score s(i, j) is affected
by three factors: (1) sm(i), whether span i is a mention, (2)
sm(j), whether span j is a mention, and (3) sa(i, j) whether
j is an antecedent of i. In the special case of the dummy
antecedent, s(i, ε) is fixed to 0. In the e2e-coref model,
when computing sa(i, j), a vector encoding additional fea-
tures such as genre information and the distance between the
two spans is also used. We do not use such a feature vector
when computing sa(i, j) to simplify the implementation.

We want to maximize the marginal log-likelihood of all
antecedents in the correct coreference chain for each mention:

log
∏
i∈S

∑
ŷ∈Y (i)∩GOLD(i)

P (ŷ) (6)

where S is the set of the top scoring spans extracted by the
mention extractor (i.e., the set of unpruned spans). GOLD(i)
is the set of spans in the gold cluster containing span i. If
span i does not belong to any coreference chain or all gold
antecedents have been pruned, then GOLD(i) = {ε}.

To summarize, we first pre-train the mention extractor to
minimize the loss function defined in Eq. 4. We then jointly
train the mention extractor and the mention linker to optimize
the objective defined in Eq. 6 in an end-to-end manner.

3. EXPERIMENTS AND RESULTS

Dataset and Experiments Setup To evaluate the effec-
tiveness of the proposed approach, we use the CoNLL-

https://github.com/huggingface/transformers


MUC B-CUBED CEAFφ4
P R F1 P R F1 P R F1 Avg. F1

e2e-coref [7] 78.4 73.4 75.8 68.6 61.8 65.0 62.7 59.0 60.8 67.2
e2e-coref + Structural info [14] 80.5 73.9 77.1 71.2 61.5 66.0 64.3 61.1 62.7 68.6
c2f-coref + ELMo [9] 81.4 79.5 80.4 72.2 69.5 70.8 68.2 67.1 67.6 73.0
EE + BERT-large [12] 82.6 84.1 83.4 73.3 76.2 74.7 72.4 71.1 71.8 76.6
c2f-coref + BERT-large [13] 84.7 82.4 83.5 76.5 74.0 75.3 74.1 69.8 71.9 76.9
c2f-coref + SpanBERT-large [15] 85.8 84.8 85.3 78.3 77.9 78.1 76.4 74.2 75.3 79.6
Simplified e2e-coref (Ours) 85.4 85.4 85.4 78.4 78.9 78.7 76.1 73.9 75.0 79.7

Table 1. Performance on the OntoNotes coreference resolution benchmark.

Avg. Nb Spans Proposed Gold Mention Recall
e2e-coref [7] ∼ 200.43 spans / docs 92.7%
Simplified e2e-coref (Ours) ∼ 141.79 spans / docs 95.7%

Table 2. Proportion of gold mentions covered in the devel-
opment data by the mention extractor of e2e-coref and our
mention extractor.

2012 Shared Task English data [24] which is based on the
OntoNotes corpus. This dataset has 2802/343/348 documents
for the train/dev/test split. Similar to previous works, we
report precision, recall, and F1 of the MUC, B3, and CEAFφ4

metrics, and also average the F1 score of all three metrics.
We used SpanBERT (spanbert-large-cased) [15] as the en-
coder. Two different learning rates are used, one for the lower
pretrained SpanBERT encoder (5e-05) and one for the upper
layers (1e-4). We also use learning rate decay. The number
of training epochs is set to be 100. The batch size is set to be
32. We did hyper-parameter tuning using the provided dev
set. To train our model, we use two 16GB V100 GPUs and
use techniques such as gradient checkpointing and gradient
accumulation to avoid running out of GPUs’ memory.

Comparison with Previous Methods Table 1 compares
our model with several state-of-the-art coreference resolu-
tion systems. Overall, our model outperforms the original
e2e-coref model and also all recent extended works. For
example, compared to the variant [c2f-coref + SpanBERT-
large], our model achieves higher F1-scores for the MUC
and B3 metrics. Even though our model achieves a slightly
lower F1-score for the CEAFφ4

metric, the overall averaged
F1 score of our model is still better. The variant [c2f-coref +
SpanBERT-large] is more complex than our method, because
it has some other additional components such as coarse-to-
fine antecedent pruning and higher-order inference [9, 15].

Recently, a model named CorefQA has been proposed
[19], and it achieves an averaged F1 score of 83.1 on the
English OntoNotes benchmark. The work takes a complete
departure from the paradigm used by the e2e-corefmodel,
and instead, proposes to formulate the coreference resolution
problem as a span prediction task, like in question answer-
ing. To achieve its impressive performance, the CorefQA
model is very computationally expensive. In order to predict

coreference clusters for a single document, CorefQA needs
to run a Transformer-based model on the same document
many times (each time a different query is appended to the
document).

Analysis on the Performance of the Mention Extractor In
our work, the value of the parameter λ for pruning is set to be
0.25. On the other hand, it is set to be 0.4 in the e2e-coref
model. Table 2 shows the comparison in more detail. Our
mention extractor extracts 95.7% of all the gold mentions
in the dev set, while the mention extractor of e2e-coref
extracts only 92.7% of them. By proposing fewer candidate
spans, the workload of our mention linker is also reduced.

4. CONCLUSIONS

In this work, we propose a simple yet effective baseline for
the task of coreference resolution. Despite its simplicity, our
model still outperforms all recent extended works on the En-
glish OntoNotes benchmark. In future work, we plan to re-
duce the computational complexity of our baseline model us-
ing compression techniques [25, 26, 27]. We also plan to ad-
dress the task of event coreference resolution [28, 29].
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