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DOUBLE-RIS VERSUS SINGLE-RIS AIDED SYSTEMS: TENSOR-BASED MIMO CHANNEL
ESTIMATION AND DESIGN PERSPECTIVES
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ABSTRACT

Reconfigurable intelligent surfaces (RISs) have been pro-
posed recently as new technology to tune the wireless prop-
agation channels in real-time. However, most of the current
works assume single-RIS (S-RIS)-aided systems, which can
be limited in some application scenarios where a transmit-
ter might need a multi-RIS-aided channel to communicate
with a receiver. In this paper, we consider a double-RIS
(D-RIS)-aided MIMO system and propose an alternating
least-squared-based channel estimation method by exploiting
the Tucker?2 tensor structure of the received signals. Using the
proposed method, the cascaded MIMO channel parts can be
estimated separately, up to trivial scaling factors. Compared
with the S-RIS systems, we show that if the RIS elements
of a S-RIS system are distributed carefully between the two
RISs in a D-RIS system, the training overhead can be reduced
and the estimation accuracy can also be increased. Therefore,
D-RIS systems can be seen as an appealing approach to fur-
ther increase the coverage, capacity, and efficiency of future
wireless networks compared to S-RIS systems.

Index Terms— Double RIS, TUCKER2 decomposition,
channel estimation, RIS reflection design.

1. INTRODUCTION

[Reconfigurable intelligent surfaces (RISs)| have been pro-
posed recently as a cost-effective technology for reconfig-
uring the propagation channels in wireless communication
systems [[1]. An RIS is a 2D surface equipped with a large
number of tunable units that can be realized using, e.g., inex-
pensive antennas or metamaterials and controlled in real-time
to influence the communication channels without generating
its own signals. Recently, @}aided communications have
attracted great attention [2]], due to their potential of improv-
ing the efficiency, the communication range, and the capacity
of wireless communication systems.
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Most of the current works, e.g., in [3H8]], assume single-
RIS (S-RIS)-aided systems, where a transmitter (Tx) com-
municates with one receiver (Rx), or more, via a single RIS-
aided channel. However, in many application scenarios, e.g.,
in a urban area or in a satellite-to-indoor communication, the
Tx might need a multi-RIS-aided channel to have successful
communication with the Rx. Moreover, in a S-RIS system,
it was shown that the RIS should be either deployed closer
to the Tx or closer to the Rx to achieve the best performance
gain [9]]. This fundamental result gives rise to the double-RIS
(D-RIS) systems, where one RIS is deployed closer to the Tx
and another is deployed closer to the Rx. In such systems,
channel estimation (CE) becomes more problematic since the
cascaded (effective) channel contains three parts not only two
as in the S-RIS systems (see Fig. [I).

In this papelﬂ we consider a D-RIS aided MIMO system
and propose an efficient CE method by exploiting the ten-
sor structure of the received signals [[I0H12]. Specifically,
we first show that the received signals in flat-fading D-RIS
aided MIMO systems can be arranged in a 3-way tensor that
admits a Tucker2 decomposition [[10]]. Accordingly, an alter-
nating least-squared (ALS)-based method is proposed, where
the Tx-to-RIS 1 channel (denoted by Hr), the-RIS 1-to-RIS 2
channel (denoted by Hg), and the RIS 2-to-Rx channel (de-
noted by Hg) can be estimated separately, up to trivial scaling
factors. We compare the proposed ALS method for D-RIS
systems to the ALS method for S-RIS systems proposed in
[7,/8] in terms of the minimum training overhead and the esti-
mation accuracy. It is shown that if the RIS elements in the S-
RIS systems are distributed carefully between the two RISs in
the D-RIS systems, the training overhead can be reduced and
the estimation accuracy can also be increased. Note that, since
the system spectral efficiency is inversely proportional to the
length of the training overhead, we conjecture that there is an

Notation: The conjugate, the transpose, the conjugate transpose (Hermi-
tian), the pseudoinverse, the Kronecker product, and the Khatri-Rao product
are denoted as A*, AT, AH, A+ &, and o, respectively. Moreover, 1 is
the all ones vector of length N, Iy is the N x N identity matrix, diag{a}
forms a diagonal matrix A by putting the entries of the input vector a on
its main diagonal, vec{ A’} forms a vector by staking the columns of A over
each other, unvec{A} is the reverse of the vec operator, [z] is the ceiling
function, and the n-mode product of a tensor A € CT1 X 12X, XIN yith a
matrix B € C7*In is denoted as .,A x , B.. Moreover, the following proper-
ties are used: Property 1: vec{ ABC} = (CT ® A)vec{B} and Property 2:
vec{ Adiag{b}C} = (CT o A)b.



optimal distribution of the RIS elements that strikes an opti-
mal trade-off between the training overhead and the achiev-
able performance, which is out of the scope of this paper and
we leave for future work. It is worth mentioning that the con-
sidered D-RIS system can also resemble communication sce-
narios where the RISs in both communicating ends are co-
located with the transceivers, as it has been proposed in [[13]].
Therefore, Hy and Hgr channels can be assumed known by
careful transceivers design.

2. D-RIS SYSTEM MODEL

In this section, we consider a D-RIS-aided MIMO communi-
cation system as depicted on the left-side of Fig. [T} where a
Tx with My antennas is communicating with a Rx with Mg
antennas via a D-RIS-aided channel. Here, RIS 1 is assumed
to be close to the Tx and has V7 reflecting elements, while
RIS 2 is assumed to be close to the Rx and has N5 reflecting
elements. We assume that the Tx-to-Rx, the Tx-to-RIS 2, and
the RIS 1-to-Rx channels are unavailable due to blockage or
too weak due to high pathloss.

Let Hy € CN1XMr pe the Tx-to-RIS 1 channel, Hg €
CN2xN1 pe the RIS 1-to-RIS 2 channel, and Hg € CMrx N2
be the RIS 2-to-Rx channel. To estimate these channels, we
conduct a channel-training procedure, which occupies L =
I - K subframes. The received signal at the (z, k)th subframe,
ie{l,...,I}and k € {1,..., K}, can be written as

Vi = Hr®;Hs ¥, Hrfys), + 0, € CMr, (1

where ¥; = diag{1;} € CV1*M i the ith diagonal reflec-
tion matrix of RIS 1, with ¢p; € C* and |[¢;];;| = 1/v/ N7,
®; = diag{¢;} € CN2*N2 is the ith diagonal reflection ma-
trix of RIS 2, with ¢p; € C2 and |[¢;] ;1| = 1/v/Na, £y, €
CMr is the kth precoding vector at the Tx with ||f;|| = 1, s
is the kth unit-norm training symbol, and fi; , € CM* is the
additive white Gaussian noise vector having zero-mean circu-
larly symmetric complex-valued entries with variance 2.
Let @ = [¢1,...,9;] € CNX & = [¢y,...,¢1] €
CN2*I and F = [fys1, ..., fxsk] € CMrE Then, by stak-
ing {yiyk}szl next to each otheras Y; = [¥; 1, . .. ,¥i. k], the
obtained measurement matrix Y; can be expressed as

Y, = Hr®;Hs ¥, HF + N; € CVor K, @)

where N; € CMr*K j5 expressed similarly. We assume that
the training matrix F' is designed with orthonormal rows so
that FFH =1 M;y» Which directly implies that ' > Mr. Then,
after right filtering Y; with F" ie., Y; = Y,F", we can
write the obtained matrix Y; as

Y; = Hr® Hs ¥, Hy + N, € CMexMr, A3)
where N; = N,FM.  Given the measurement matrices

Y;,Vi € {1,...,I}, our main goal in Section is to
obtain an estimate to the channel matrices Hg, Hr, and H.
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Fig. 1. D-RIS versus S-RIS aided MIMO communications.

2.1. Proposed Tucker2-based for CE in D-RIS systems

By concatenating Y1, ..., Y  in (3) behind each other, a 3-
way tensor can be obtained as Y = [Y,Us...,UsY ] €
CMrxMrxI " \where Y; represents its ith frontal slice. Here,
we note that the tensor Y has a Tucker2 representation as [[11]]

YV =8 x; Hg xo H} + N € CMrxMrxI 4)

where N is the noise tensor and S is formed by concatenating
®,HsW,;,Vi € {1,..., I}, behind each other as

S=[® HsW,,s...,LUs®HgW | € CN*NxI (5

From the above, the CE problem can be formulated as

{Fir, Hy, Hg} = argmin [|Y — S x1 Hg xo HI [, (6)
Hg,Hr,Hg

which is nonconvex due to its joint optimization. To obtain a
solution, we resort to an alternating minimization approach,
where we solve (6) for one variable assuming the other two
are fixed. To achieve this end, we exploit the n-mode unfold-
ings of . i.e., [Y](n),n € {1,2,3} expressed as [10,/11]

= Hg Zg(Hp, Hs) + [N] 1) € CMrxIMr 7
= H{ Zr(Hg, Hs) + [N](g) € CMrIMr ®)
[y]( 3) = [8](3)(Hf ® Hg)" M( € CIXMMR ()

where Zg (Hr, Hs) = [S8]1)(I; ® Hf)T € CN>*IMr and
Zr(Hg, Hs) = [8](2)(I;®Hg)T € CM*/Mx_ Note that, ac-
cording to the definition of 7-mode unfoldings [10], [S](3) €
CI*NiN2 can be expressed as [S](3) = (¥ o ®)'diag{hs},
where hg = vec{Hs} € C», Therefore, we have

+ V). (10)

The vectorized form of [Y]s), i.e., y(3) = vec{[V])}
can be expressed as

[V]z) = (¥ o @) diag{hs}(Hf ® Hg)"

¥3) = Zs(Hr,HR) hg +n(3y € C'MMe o (11)

where n(3) = vec{[N] )}, Zs(Hr, Hg) = (HT ® Hg) o

(Tod) ) € CIMrMrx NNz Byexplomng and.
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Fig. 2. Number of channels coefficients (¢x gis) and minimum training overhead (/ and J) [N = 40, N, = N — N;].

an estimate of Hgr, Hr, and hg can be obtained as

Hy = ar%{minH[y](l) — Hg Zg(Hr, Hs) I (12)
R

Hr = argHminH[y](g) — H{ Zr(Hg, Hs) |7 (13)
T

hg = arghminHy(g) — Zs(Hr, Hg) hs|3. (14)

S

The above problems are convex and can be solved using
the alternating least squares (ALS) method, as summarized in
Algorithm [T} which is guaranteed to converge monotonically
to, at least, a locally optimal solution [/11]].

Algorithm 1 ALS method for CE in D-RIS MIMO systems

1: Input: Measurement tensor ) € CMr*MrxI a5 in (4))
2: Initialize: H(TO) and Hgo) and select tax.

3: fort = 110t do

& HY = Doz HT )

s B = (Ve zoy =)'

6: I:Ig) = unvec{{Zs(H%t), Hg))}+y(3)}

7: end for

3. COMPARISON WITH S-RIS AIDED SYSTEMS
In S-RIS-aided systems, on the other hand, the communica-
tion between the Tx and the Rx with Mt and Mg antennas,
respectively, is aided via a single RIS with N elements, as
depicted on the right-side of Fig. [I| Let Gy € CV*Mr be
the Tx to RIS channel and Gg € CMr*N pe the RIS to Rx
channel. Then, it was shown in [7,/8] that the received sig-
nals at the Rx can be arranged in a 3-way tensor admitting a
canonical polyadic (CP) decomposition given as

X =Ty x1 Gr X2 G x3 Q" + € € CMXMrxT 0 (q5)

where T3 y € ZN*N*N is the super-diagonal tensor, £ is the
noise tensor, Q = [wy,...,ws] € CV*7 is the RIS training
matrix with J training beams and |[w;]g| = 1/ V'N. The
n-mode unfoldings of X, n € {1, 2}, can be expressed as
[X](1) = Gr VR(Grt) + [€] (1) € CMrx /M (16)
[X)2) = G Vr(Gr) + [€]2) € CH7Me, (17

where Vx(Gt) = (27 0 GI)T € CV*/Mr and Vi(GR) =
(Q7 o Gg)T € CN*/Mr_ Therefore, an ALS-based method,
similarly to Algorithm [T} has been proposed in [8] to obtain
an estimate of Gr and G, as summarized in Algorithm@

Algorithm 2 ALS method for CE in S-RIS MIMO systems

1: Input: Measurement tensor X' € CMrxMrxJ agin
2: Initialize: G(TO) and select tqx.

3: fort =1 to t.x do

£ G =X {VR(GY )Y

s GY = (X {ve(GH)H)!

6: end for

Identifiablity, in the LS sense, can be obtained by not-
ing that Zg, Zt, Vg, and V1 need to have full column-rank,
while Zg needs to have full row-rank [11]]. This leads to the
following conditions: IMy > N, (for Zg), IMr > N
(for Z1), JMt > N (for Vx), JMr > N (for V), and
I Mg My > NN, (for Zs). Therefore, we conclude that

I > max {[N2/Mr], [Ni/Mg], [Ni{N2/MgMr]}
J > max {[N/Mr], [N/Mg]},

(13)
19)

where (I8) is for the D-RIS systems and (I9) is for the S-
RIS systems. Let ¢pgris and ¢s.ris denote the total number of
channel coefficients in the D-RIS and the S-RIS communica-
tion scenarios, respectively, which are given as

fpris = MtNy + NNy + Mg N,
lsris = MtN + MgN.

(20)
21

Let us assume that the S-RIS elements /N are distributed
between RIS 1 and RIS 2 in the D-RIS scenario such that
N = N; + N,. In Fig. 2] we plot results of (I8), (19)., (20),
and @) for different Mg and Mt values assuming N = 40.
Note that along the x-axis we vary INq so that No = N — Nj.
From Fig. 2| we have the following remarks:

Remark 1: If N > max{ Mg, M7} and Mg = My, then
S-RIS, i.e., Algorithm|2| requires less training overhead com-
pared to D-RIS, i.e., Algorithm[I} in most of the Ny and N



T T

o S-RIS (N = 40) ,:
o D-RIS (N = 10, Ny = 30) ||
o D-RIS (N; = 30, Ny = 10) | ]|

NMSE

NMSE

T T T
o S-RIS (N = 80) .
o D-RIS (N; = 10, N; = 70) |]
o D-RIS (N; = 70, Ny = 10) |
S|—I=J=40 1
---I=J=80 E

1071

-10—2 L

My =2, Mg =32 R
10-3 | | | | -

10 15
SNR [dB]

0 5 10 15
SNR [dB]

Fig. 3. NMSE versus SNR comparing the D-RIS against the S-RIS systems for different system settings [Mt = 2].

distribution scenarios. This comes from the fact that the num-
ber of channel coefficients that D-RIS needs to estimate, i.e.,
Cp.ris is much larger than that of S-RIS, i.e., Us.gis.

Remark 2: If N ~ max{Mpg, My}, then D-RIS requires
less training overhead compared to S-RIS for the same reason
mentioned in Remark 1, i.e., Up.ris < Ys.ris-

Remark 3: In the D-RIS systems, the careful distribution
of the N elements between RIS 1 and RIS 2 (i.e., N1 and Ns)
can reduce the training overhead of Algorithm[I} From Fig.[2]
we can note that the best distribution depends on the Mg and
the M7 values as: if Mg > My, then it is more beneficial to
allocate more elements to RIS 1 than RIS 2, i.e., N1 > No.
This observation is reversed if Mr < Mr, i.e., more elements
should be allocated to RIS 2 than RIS I as N1 < N-s.

Computational complexity: Assuming that the condi-
tions in (18) and are satisfied, the complexitiesﬂ of Algo-
rithm and Algorithm [2|are on the order of O (tmax - (N3 +
N} + (N1 - N2)?)) and O (tmax - 2V?3), respectively.

Ambiguities: Assuming that the conditions in and
@]) are satisfied, then the estimated MIMO channels by Al-
gorithm[T]and Algorithm[Z]are unique up to scalar ambiguities
[8/L1]]. In particular, the estimated channels are related to the
perfect (true) channels as: fIR ~ HrARg, I:IT ~ AtHr,
Hs ~ Ag'HsAL! Gr ~ GgA, and Gy ~ A'Gr,
where A and A are diagonal matrices holding the scaling
ambiguities. However, these ambiguities disappear when re-
constructing an estimate of the effective end-to-end channels
I:Ie = I:IRI:ISI:IT and Ge = GRGT. Moreover, note that, due
to the knowledge of the RIS reflection matrices ¥, ®, and 2
at the Rx, the permutation ambiguities do not exist [8].

~
~

~
~

~
~

4. SIMULATION RESULTS

We assume that the entries of the channel matrices Hg,
Hry, Hg, Gg, and Gp follow a Rayleigh fading distribu-
tion. We show results in terms of the normalized-mean-
square-error (NMSE) of the effective channels defined as
NMSE = E{|[H. - FL|R}/E{|H|}, for the D-RIS,
and NMSE = E{||G, — Ge[[2} /E{|[G[l2}. for the S-

2Here, we have assumed that the complexity of calculating the Moore-
Penrose inverse of a . X m matrix is on the order of O(min{n, m}3).

RIS. We define the signal-to-noise ratio (SNR) as SNR =
E{||¥ — N|2}/E{|IN||2}, for the D-RIS, and SNR =
E{[|x — &||3}/E{||E||2}. for the S-RIS. Moreover, assum-
ing that I < NiNy and J < N, the training matrices
W, ®, and Q are updated using a DFT-based approach as:
P = Wy, ® 1}—2][:71:1], v = [1}—1 ® WNl][:,lzl}, and
Q= [WN][:J:J], where I_l ’VNLI—‘ s I_Q IVNLQ—‘ ,and Wg
is the normalized K x K DFT matrix such that Q"Q = I,
and YHY =1;, where Y = ¥ ¢ ®.

Fig. [3] shows the NMSE versus SNR results for differ-
ent system settings. From the left-side figure, we can see
that when Mg = 8§, the D-RIS, i.e., Algorithmhas a worse
NMSE performance compared to the S-RIS, i.e., Algorithm[2]
especially with the [N1, N2] = [10, 30] distribution scenario.
This can be explained from Fig. [2Jand Remarks 1 and 3. Note
that in a such system setting, the D-RIS has a larger num-
ber of channels coefficients /pgis = 560 compared to the
S-RIS /s ris = 400. Moreover, as we have highlighted in Re-
mark 3, we can see that the [N1, N2] = [30, 10] distribution
scenario has a better NMSE performance than [Ny, Na] =
[10, 30], since Mt < Mg. On the other hand, when My = 32,
we can see that the D-RIS has a much better NMSE perfor-
mance compared to the S-RIS, especially with the [N7, No] =
[30, 10] distribution scenario. This can be explained in the
same way from Fig. [2]and Remarks 2 and 3. From the right-
side figure, we can see that the same observations hold true
when we increase IV from 40 to 80 or when we increase the
training overhead I and J from 40 to 80.

5. CONCLUSIONS

In this paper, we have shown that D-RIS MIMO systems can
be used to reduce the training overhead and to improve the
channel estimation accuracy compared to S-RIS aided sys-
tems. This comes from the observation that if the RIS ele-
ments in the S-RIS system are distributed carefully between
the two RISs in the D-RIS system, the number of channel
coefficients in the D-RIS system that need to be estimated re-
duces significantly compared to the S-RIS system. Therefore,
D-RIS systems can be seen as an appealing approach to fur-
ther increase the coverage, capacity, and efficiency of wireless
networks compared to S-RIS systems.
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