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ABSTRACT

Speech enhancement and separation are two fundamental tasks
for robust speech processing. Speech enhancement suppresses
background noise while speech separation extracts target speech
from interfering speakers. Despite a great number of supervised
learning-based enhancement and separation methods having been
proposed and achieving good performance, studies on applying
self-supervised learning (SSL) to enhancement and separation are
limited. In this paper, we evaluate 13 SSL upstream methods on
speech enhancement and separation downstream tasks. Our exper-
imental results on Voicebank-DEMAND and Libri2Mix show that
some SSL representations consistently outperform baseline features
including the short-time Fourier transform (STFT) magnitude and
log Mel filterbank (FBANK). Furthermore, we analyze the factors
that make existing SSL frameworks difficult to apply to speech en-
hancement and separation and discuss the representation properties
desired for both tasks. Our study is included as the official speech
enhancement and separation downstreams for SUPERB.

Index Terms— Self-Supervised Learning, Speech Enhance-
ment, Speech Separation

1. INTRODUCTION

Speech enhancement and separation are two fundamental tasks for
speech processing. The former suppresses background noises to im-
prove speech quality and intelligibility while the latter extracts target
speech from interfering speakers [1, 2]. Both techniques are com-
monly used as preprocessing steps for tasks like automatic speech
recognition (ASR) and speaker diarization, especially under noisy
conditions [3, 4, 5].

Over the past few years, deep learning-based methods have de-
veloped rapidly and become the mainstream for speech enhance-
ment and separation, among which the supervised learning-based
approaches are the most widely used ones. The supervised learning-
based methods design objectives to approximate target signals either
by estimating the spectral mask [6, 7, 8, 9, 10, 11, 12] or directly
predicting the waveform [13, 14, 15, 16, 17, 18, 19].

Despite good performance, the supervised learning-based ap-
proaches are data-hungry and require a sufficient amount of labeled
data to perform well, which is expensive. Self-supervised learning
has been proposed to address this issue. Unlike supervised learn-
ing which directly optimizes for a specific task, SSL first pretrains
models on unlabeled data to extract task-agnostic representations
and then finetune models on the target domain. SSL has drawn
massive attention due to its great performance and generalization
ability. Inspired by the great success of SSL in natural language

processing (NLP) [20, 21] and computer vision (CV) [22, 23], an
increasing number of SSL frameworks for speech have been pro-
posed [24, 25, 26] and successfully applied to various downstream
tasks including ASR [27], speaker recognition [28], emotion recog-
nition [29], spoken language understanding [30] etc.

To systematically explore the SSL paradigm for speech-related
tasks, the Speech processing Universal PERformance Benchmark
(SUPERB) [31] is proposed. It evaluates the performance of a
shared model across a wide range of speech processing tasks includ-
ing phoneme recognition, ASR, speaker identification, automatic
speaker verification, speaker diarization, intent classification, slot
filling and emotion recognition, with minimal architecture changes
and labeled data.

In this paper, we follow the principles of SUPERB [31] and fur-
ther investigate SSL for speech enhancement and separation. We
aim to 1) Compare existing SSL models for speech enhancement
and separation tasks. 2) Figure out the desired representation prop-
erties and proper pretraining setups for both tasks. We hope our
study could cast light on the future design of SSL frameworks for
speech enhancement and separation.

2. RELATED WORK

2.1. Speech separation

With the advance of deep learning techniques, speech separation has
witnessed rapid improvement. Most of the existing speech separa-
tion frameworks are based on supervised learning and can be divided
into frequency-domain and time-domain methods. The former esti-
mates time-frequency (T-F) mask for each source based on the STFT
features and reconstructs individual sources using inverse short-time
Fourier transform (iSTFT). Typical systems include Deep Cluster-
ing [10], uPIT [11], Deep Attractor Network [12] etc. The time-
domain methods [15, 16, 17, 18, 19] take the waveform of mixtures
as input and directly predict the waveform of different sources using
an encoder-decoder architecture. They are achieving state-of-the-art
results in recent years. For SSL’s applications in speech separation,
in [32], the authors find self-supervised pretraining on enhancement
data can stabilize the label assignment during separation training and
improve separation performance.

2.2. Speech enhancement

Over the past few years, deep learning-based enhancement mod-
els have dominated this field. Same as speech separation, speech
enhancement methods can be divided into frequency and time do-
main. Among frequency-domain methods, [6] uses a recurrent neu-
ral network (RNN) to predict T-F masks. MMSE-GAN [7] generates
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T-F masks using a generative adversarial network (GAN). Metric-
GAN [8] and MetricGAN+ [9] propose a method to train the gener-
ator with respect to enhancement evaluation metrics. Among time-
domain methods, SEGAN [13] uses a GAN to directly generate the
clean waveform. DEMUCS [14] use an encoder-decoder architec-
ture with skip-connections to predict the clean waveform. Unlike
separation, where time-domain methods are dominating, frequency-
domain methods are still competitive for speech enhancement [9].

3. METHODOLOGY

3.1. Self-supervised pretrained models

In this paper, we evaluate 13 SSL upstream models from the S3PRL
toolkit [31] on speech enhancement and separation downstream
tasks. These SSL models can be categorized into generative and
contrastive models [33].

Generative models train an encoder to transform input x to rep-
resentation z, and try to reconstruct x with representation z [33].
The generative models we studied include APC [34], VQ-APC [35],
NPC [36], Mockingjay [37] and TERA [38]. APC [34] follows a
language model training style, and it uses a RNN to predict the fu-
ture spectrum. VQ-APC [35] adds a vector quantization (VQ) layer
on top of APC model to better control the model capacity. NPC [36]
is proposed as a non-autoregressive alternative to APC. It uses con-
volution architectures and predicts the center frame based on left and
right context. Inspired by BERT [21], Mockingjay [37] pretrains a
Transformer encoder by predicting masked time frames. TERA [38]
extends Mockingjay by also predicting masked frequency bins.

Contrastive models also train an encoder to transform input x
to representation z but to measure similarity [33]. Among the con-
trastive models we use, CPC [39] combines predicting future obser-
vations with a contrastive loss InfoNCE. Modified CTC [40] pro-
poses several changes to the model architecture to improve training
stability and model performance. wav2vec [24] uses the same In-
foNCE objective but a larger CNN architecture. vq-wav2vec [41]
adds a VQ layer to wav2vec, enabling the direct use of NLP mod-
els like BERT on top of it. wav2vec 2.0 [25] incorporates the vq-
wav2vec and BERT model into one end-to-end framework. Unlike
BERT which predicts the masked tokens, wav2vec 2.0 still uses the
contrastive loss as the objective. Inspired by DeepCluster [42], Hu-
BERT [26] performs offline clustering on representations, enabling
it to avoid contrastive loss through directly predicting the cluster la-
bels of the masked positions. UniSpeech-SAT [43] and WavLM [44]
models are variants of the HuBERT model. The UniSpeech-SAT
model adds an utterance-wise contrastive loss to enhance speaker
information modeling and mixes original speech with interfering
speakers as data augmentation. The WavLM model adds gated rela-
tive position bias to the Transformer structure and also uses utterance
mixing augmentation (both interfering speech and noises are added).

In addition to these models, PASE+ [45] borrows ideas from
both generative and contrastive models. It performs multiple SSL
tasks including feature generation and contrastive learning to learn
robust speech representations.

3.2. Downstream models for enhancement and separation

Following the principles of SUPERB [31], we constrain our down-
stream models to be as lightweight as possible. After balancing be-
tween computational cost and performance, we choose a T-F mask-
based model [11] as our downstream model. As shown in Figure 1,
for speech enhancement, the SSL model takes the noisy waveform as
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Fig. 1. T-F mask-based speech enhancement downstream model.
For speech separation, we estimate multiple masks from the RNN.

input and extracts speech representations F. Based on F, the RNN
predicts the STFT mask M1 of the clean signal. The estimated mask
M1 is multiplied with the STFT features S and transformed back to
the time domain using iSTFT. The pipeline of separation is almost
the same. The only difference is that the RNN will estimate multi-
ple masks for different speakers. We use a three-layer bidirectional
long short-term memory network (BLSTM) as the network architec-
ture and the mean square error between the predicted mask and Ideal
Non-negative Phase Sensitive Mask (INPSM) [11] is chosen as the
objective. INPSM is defined as

M inpsm
s = max

(
0,
|Xs(t, f)| cos (θy(t, f)− θs(t, f))

|Y (t, f)|

)
where Y is the mixture signal, Xs is the signal from source s,
|X(t, f)| is the STFT magnitude of signal X for time frame t and
frequency bin f , θy and θs are the phases of the mixture and source
s. For speech separation, permutation invariant training (PIT) [46]
is utilized to address the speaker permutation problem.

During finetuning, we follow SUPERB’s setup [31] to freeze the
parameters of the SSL models. Instead of extracting representations
from the last hidden layer, we weighted-sum the embeddings from
all layers as the final representation F similar to ELMo [20].

F =

K−1∑
i=0

wiFi

where K is the total number of layers, Fi is the representation ex-
tracted from the ith layer, wi is the weight for the ith layer. The
layer weights w = [w0, w1, w2, ..., wK−1] are learned during the
finetuning stage.

We did not use time-domain methods for the following two
reasons. 1) Stride difference: Most of the existing SSL frameworks
are using a stride size of 10 or 20ms, which corresponds to 160 to
320 samples for 16kHz audios. Such stride sizes are suitable for
phoneme-level and sentence-level tasks such as ASR and speaker
recognition but excessively large for time-domain speech enhance-
ment and separation. As a comparison, most time-domain speech
separation models are using a stride size smaller than 10 samples.
We discuss the effect of stride size in Section 5.2.1. 2) Model
complexity: We could not find an appropriate time-domain method
that is light enough for enhancement and separation. Putting a huge
downstream model on top of SSL representations violates SSL’s
principle of simple finetuning.

4. EXPERIMENTAL SETUP

4.1. Dataset

For speech enhancement, we use the Voicebank-DEMAND [47],
a synthetic dataset created by mixing up clean speech and noise.
The clean speech is extracted from the Voice Bank corpus [48], and



the noise is from the Diverse Environments Multichannel Acous-
tic Noise Database (DEMAND) [49]. The training set contains 28
speakers with 4 signal-to-noise ratios (SNRs) (15, 10, 5, and 0 dB)
and the test set contains 2 speakers with 4 SNRs (17.5, 12.5, 7.5,
and 2.5 dB). The training set contains 11,572 utterances (9.4h) and
the test set contains 824 utterances (0.6h). The lengths of utterances
range from 1.1s to 15.1s with an average of 2.9s.

For speech separation, we experiment on the LibriMix [50]
dataset. The LibriMix dataset is simulated from the clean speech
in LibriSpeech [51] and noise in WHAM! [52]. Since most SSL
models only support 16kHz audios as input, we choose the “16kHz
min” version of the data. The speech mixtures are created by mixing
speech segments from different speakers. The loudness of each
utterance is uniformly sampled between -25 and -33 loudness units
relative to full scale (LUFS). Random noise samples with loudness
between -38 and -30 LUFS are added to the speech mixtures. The
training set contains 13,900 utterances with 43.3 hours of speech.
In our experiments, we evaluate both “sep clean” and “sep noisy”
conditions (separating speech from clean/noisy mixtures).

4.2. Evaluation metric

Speech enhancement requires both speech quality and intelligibility.
In our experiment, we report two commonly used metrics: percep-
tual evaluation of speech quality (PESQ) [53, 54] and short-time ob-
jective intelligibility (STOI) [55]. PESQ measures the speech qual-
ity, and it predicts the subjective opinion scores of a degraded sig-
nal. We use the wide-band version of PESQ implemented in python-
pesq [56]. STOI is a human-designed metric that shows a high cor-
relation with the intelligibility of noisy speech. The range of STOI
is from 0 to 100. For both metrics, a higher value indicates better
performance.

For speech separation, we use Scale-Invariant Signal-to-Noise
Ratio improvement (SI-SNRi) as the evaluation metric. It is a
simpler and more robust alternative to Source-to-Distortion Ratio
(SDR). SI-SNR is defined as

starget =
(̂sᵀs)s

‖s‖2

enoise = ŝ− starget

SI-SNR(s, ŝ) = 10 log10
‖starget‖2

‖enoise‖2

where s ∈ RL is the ground truth signal, ŝ ∈ RL is the estimated
signal and ‖s‖ =

√
sᵀs denotes the L2 norm of s. SI-SNRi is the

SI-SNR improvement against the mixtures, defined as

SI-SNRi = SI-SNR(s, ŝ)− SI-SNR(s,m)

where m ∈ RL is the mixture signal.

4.3. Model architecture and finetuning details

During finetuning for speech enhancement and separation tasks, we
use a three-layer BLSTM as the downstream model. Each BLSTM
layer contains 896 hidden units. The output of the BLSTM is further
processed by a linear layer and a ReLU activation.

The downstream models are finetuned for 150k steps with a
batch size of 8. We use the Adam optimizer with a learning rate of
1e−4. Following SUPERB’s [31] setup, we don’t decay the learning
rate during finetuning. We choose the model with the best perfor-
mance (highest PESQ for enhancement and SI-SNRi for separation)
on the development set.

5. EXPERIMENTAL RESULTS

5.1. Main experiment

We present the speech enhancement and separation results for 13
SSL upstream models in Table 1. For the STFT features, we use
a frame size of 512, a frame shift of 160, and perform a 512-point
FFT on each frame. The FBANK features are extracted using the
torchaudio [57] toolkit with a frame size of 400 and a frame shift
of 160. The number of Mel-frequency bins is set to 80. Delta and
delta-delta coefficients are appended, and cepstral mean and variance
normalization (CMVN) is applied. The extracted FBANK features
have 240 dimensions.

Among the SSL models, wav2vec2, HuBERT, UniSpeech-
SAT, and WavLM use a stride of 320 samples (20ms) while
other models use 160 samples (10ms). Among these SSL mod-
els, UniSpeech-SAT/WavLM Base+/Large, wav2vec2 Robust have
seen noisy speech in real scenarios while other models are pre-
trained on the clean speech from audiobooks (LibriSpeech [51] and
LibriLight [58]). Our findings are as follows.

Compared with other tasks such as ASR, the improvement
of SSL is not as large for enhancement and separation. For en-
hancement, only the HuBERT/UniSpeech-SAT/WavLM Large
and UniSpeech-SAT Base+ achieve more than 0.05 PESQ im-
provement over the FBANK baseline. Other SSL models have
comparable or even slightly worse performance. For separation,
only the UniSpeech-SAT/WavLM Large can consistently outper-
form (>0.5dB SI-SNRi improvement) the STFT baseline for both
sep clean and sep noisy conditions. The possible reasons for some
SSL models don’t perform well include 1) Domain mismatch.
Most of the SSL models above are pretrained on the clean speech
from audiobooks, and they have never seen noise and speaker over-
laps before, making representations less robust to such conditions.
For example, the Modified CPC and HuBERT Large achieve more
than 0.5dB SI-SNRi improvement over the STFT baseline for the
sep clean condition. However, their performance largely degrades
when separating noisy mixtures. 2) Information Loss. The objec-
tives of some SSL models encourage the systems to focus on global
structures and build long-term dependencies. Some local informa-
tion necessary for signal reconstruction is lost during pretraining.

Pretraining with audios from real scenarios seems to improve
the enhancement and separation performance in some cases. The
wav2vec2 Robust and WavLM Base+ largely improve the PESQ
value for enhancement and slightly improve the SI-SNRi for sep-
aration. The UniSpeech-SAT Base+ performs almost the same as
the UniSpeech-SAT Base for both tasks. The utterance mixing aug-
mentation doesn’t seem useful for enhancement, but it improves the
separation performance. Combining both techniques and other small
modifications, the UniSpeech-SAT and WavLM Large models con-
sistently outperform the HuBERT Large model. The UniSpeech-
SAT Large model has achieved the best results for enhancement and
separation tasks (except for the STOI metric). It improves the STFT
and FBANK baselines by 0.15 PESQ, 0.8 STOI, 1.24/1.18 dB SI-
SNRi on sep clean/sep noisy conditions.

Vector quantization seems to degrade the separation perfor-
mance. VQ-APC and vq-wav2vec achieve worse separation perfor-
mance compared to APC and wav2vec. A potential explanation is
that converting continuous speech representations to discrete ones is
detrimental to continuous sequence generation tasks like speech sep-
aration. Besides this, the TERA model improves both enhancement
and separation performance over the Mockingjay, which shows that
masked frequency bin prediction is useful for both tasks.



Table 1. Evaluating 13 SSL upstream models on speech enhance-
ment and separation downstream tasks. We measure speech en-
hancement performance with PESQ and STOI on the Voicebank-
DEMAND [48] dataset. For speech separation, we evaluate on
the Libri2Mix [50] dataset and report SI-SNRi for sep clean and
sep noisy conditions.

Model
Enhancement Separation

PESQ↑ STOI↑ SI-SNRi (dB)↑
/ sep c sep n

FBANK 2.55 93.6 9.23 7.18
STFT 2.51 93.6 9.89 8.26
PASE+ [45] 2.56 93.9 9.87 8.01
APC [34] 2.56 93.4 8.92 7.16
VQ-APC [35] 2.56 93.4 8.44 6.86
NPC [36] 2.52 93.1 8.04 6.75
Mockingjay [37] 2.53 93.4 9.38 7.74
TERA [38] 2.54 93.6 10.19 8.28
Modified CPC [40] 2.57 93.7 10.40 8.15
wav2vec [24] 2.53 93.8 9.30 7.09
vq-wav2vec [41] 2.48 93.6 8.16 6.22
wav2vec2 Base [25] 2.55 93.9 9.77 7.52
wav2vec2 Large 2.52 94.0 10.02 8.01
wav2vec2 Robust [59] 2.59 94.1 10.35 8.22
HuBERT Base [26] 2.58 93.9 9.36 7.46
HuBERT Large 2.64 94.2 10.45 8.45
UniSpeech-SAT Base [43] 2.60 94.0 10.33 8.28
UniSpeech-SAT Base+ 2.61 94.2 10.25 8.30
UniSpeech-SAT Large 2.70 94.4 11.13 9.44
WavLM Base [44] 2.56 94.0 10.10 7.97
WavLM Base+ 2.60 94.0 10.58 8.68
WavLM Large 2.68 94.5 10.97 9.14

Table 2. Speech enhancement and separation performance of the
STFT and HuBERT Base/Large upstreams with different stride
sizes. For separation, we only consider the sep clean condition.

Upstream Stride PESQ STOI SI-SNRi (dB)

STFT 160 2.51 93.6 9.89
320 2.42 93.3 8.79

HuBERT Base 160 2.68 94.1 10.47
320 2.58 93.9 9.36

HuBERT Large 160 2.80 94.5 11.26
320 2.64 94.2 10.45

5.2. Ablation studies

In this section, we use the HuBERT model as an example to study
the factors that influence the SSL model’s performance on speech
enhancement and separation tasks.

5.2.1. Effect of stride size

As shown in Table 2, the stride size has a huge impact on speech
enhancement and separation performance. For STFT, after we in-
crease the stride size from 160 (10ms) to 320 (20ms), the PESQ,
STOI, SI-SNRi (dB) degrade by 0.1, 0.3, and 1.1 respectively. The
original stride of HuBERT Base/Large model is 320 (20ms). We up-
sample the representations by reducing the stride of the last convo-
lution layer from 2 to 1. After upsampling, the HuBERT Base/Large
models significantly outperform the original results. For all strides
and metrics, the HuBERT models consistently outperform the STFT
baseline. Note that even after upsampling, the stride size we use is
still much larger than most time-domain enhancement and separation

Table 3. The separation performance of Conv-Tasnet [15] on the
16kHz min Libri2Mix (sep clean condition) with different stride
sizes. We use the Conv-Tasnet implementation from Asteroid [60]
and adjust the stride size in the 1d convolution encoder

Stride 8 40 160 320
SI-SNRi (dB) 14.34 13.63 9.64 8.22

systems. As a comparison, we present the correlation between stride
size and SI-SNRi for Conv-Tasnet [15] in Table 3. The vanilla Conv-
Tasnet (with a stride of 8) achieves 14.34dB SI-SNRi on Libri2Mix.
However, the performance degrades a lot as the stride size increases.
When the stride size is larger than 160, the SI-SNRi of Conv-Tasnet
is even lower than our STFT baseline.

5.2.2. Effect of layer weighting

For SSL models, different layers usually capture different speech
information, which is used for different tasks. In this section, we
extract speech representations from different layers of the HuBERT
Large model and perform speech enhancement and separation on top
of them. As shown in Table 4, the performance gap between differ-
ent layers is significant. For speech enhancement, the embeddings
from the 12th layer obtain the best PESQ and STOI numbers. It
achieves around 0.1 PESQ and 0.6 STOI improvements compared
to the last hidden layer. For speech separation, the performance de-
clines as the layer becomes deeper, and the first layer outperforms
the last layer by 4.21dB. The weighted-sum representations further
improve the enhancement and separation results, and we observe that
for most SSL models lower layers generally obtain higher weights.
One possible explanation is that some local signal information nec-
essary for speech reconstruction tasks is lost in deeper layers because
it is restricted to local speech areas and less useful for objectives like
contrastive learning and masked/future context prediction. Fully ex-
ploiting the information captured in different layers is important for
speech enhancement and separation downstreams.

Table 4. Speech enhancement and separation performance of differ-
ent layer embeddings from the HuBERT Large model. For separa-
tion, we only consider the sep clean conition.

Upstream Layer PESQ STOI SI-SNRi (dB)

HuBERT Large

0 2.52 93.9 9.96
12 2.58 94.0 8.58
24 2.49 93.4 5.75

weighted 2.64 94.2 10.45

6. CONCLUSION

In this paper, we investigate SSL for speech enhancement and sep-
aration. We evaluate 13 SSL upstream models on speech enhance-
ment and separation with a T-F mask prediction downstream. Our
experimental results reveal that 1) Although SSL models are not de-
signed for waveform generation tasks like enhancement and separa-
tion, some of them achieve remarkable improvements over the STFT
magnitudes and FBANKs. 2) Pretraining with audios from real sce-
narios and utterance mixing augmentation can increase the robust-
ness of speech representations and improve the enhancement and
separation performances. 3) Enhancement and separation require
fine-grained waveform information to reconstruct the clean signal,
which is often lost in deeper layers of SSL models. In the future, we
will study SSL representations for time-domain methods.



7. REFERENCES

[1] DeLiang Wang and Jitong Chen, “Supervised speech separation based on deep
learning: An overview,” IEEE/ACM Transactions on Audio, Speech, and Lan-
guage Processing, vol. 26, no. 10, pp. 1702–1726, 2018.

[2] Daniel Michelsanti et al., “An overview of deep-learning-based audio-visual
speech enhancement and separation,” TASLP, 2021.

[3] Shinji Watanabe et al., “Chime-6 challenge: Tackling multispeaker speech recog-
nition for unsegmented recordings,” arXiv preprint arXiv:2004.09249, 2020.

[4] Ivan Medennikov et al., “The stc system for the chime-6 challenge,” in CHiME
2020 Workshop on Speech Processing in Everyday Environments, 2020.

[5] Yuxuan Wang et al., “Ustc-nelslip system description for dihard-iii challenge,”
arXiv preprint arXiv:2103.10661, 2021.

[6] Felix Weninger et al., “Speech enhancement with lstm recurrent neural networks
and its application to noise-robust asr,” in International conference on latent vari-
able analysis and signal separation. Springer, 2015, pp. 91–99.

[7] Meet H Soni, Neil Shah, and Hemant A Patil, “Time-frequency masking-based
speech enhancement using generative adversarial network,” in ICASSP. IEEE,
2018, pp. 5039–5043.

[8] Szu-Wei Fu et al., “Metricgan: Generative adversarial networks based black-box
metric scores optimization for speech enhancement,” in International Conference
on Machine Learning. PMLR, 2019, pp. 2031–2041.

[9] Szu-Wei Fu et al., “Metricgan+: An improved version of metricgan for speech
enhancement,” arXiv preprint arXiv:2104.03538, 2021.

[10] John R Hershey et al., “Deep clustering: Discriminative embeddings for segmen-
tation and separation,” in ICASSP. IEEE, 2016, pp. 31–35.

[11] Morten Kolbæk et al., “Multitalker speech separation with utterance-level permu-
tation invariant training of deep recurrent neural networks,” TASLP, vol. 25, no.
10, pp. 1901–1913, 2017.

[12] Zhuo Chen, Yi Luo, and Nima Mesgarani, “Deep attractor network for single-
microphone speaker separation,” in ICASSP. IEEE, 2017, pp. 246–250.

[13] Santiago Pascual, Antonio Bonafonte, and Joan Serra, “SEGAN: Speech enhance-
ment generative adversarial network,” arXiv preprint arXiv:1703.09452, 2017.

[14] Alexandre Defossez, Gabriel Synnaeve, and Yossi Adi, “Real time speech en-
hancement in the waveform domain,” in Interspeech, 2020.

[15] Yi Luo and Nima Mesgarani, “Conv-tasnet: Surpassing ideal time–frequency
magnitude masking for speech separation,” IEEE/ACM transactions on audio,
speech, and language processing, vol. 27, no. 8, pp. 1256–1266, 2019.

[16] Yi Luo, Zhuo Chen, and Takuya Yoshioka, “Dual-path rnn: efficient long se-
quence modeling for time-domain single-channel speech separation,” in ICASSP.
IEEE, 2020, pp. 46–50.

[17] Jingjing Chen, Qirong Mao, and Dong Liu, “Dual-path transformer network:
Direct context-aware modeling for end-to-end monaural speech separation,” in
Interspeech, 2020.

[18] Cem Subakan et al., “Attention is all you need in speech separation,” in ICASSP
2021. IEEE, 2021, pp. 21–25.

[19] Neil Zeghidour and David Grangier, “Wavesplit: End-to-end speech separation
by speaker clustering,” TASLP, vol. 29, pp. 2840–2849, 2021.

[20] Matthew Peters et al., “Deep contextualized word representations,” in NAACL,
2018, pp. 2227–2237.

[21] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova, “Bert:
Pre-training of deep bidirectional transformers for language understanding,” in
NAACL-HLT (1), 2019.

[22] Ishan Misra and Laurens van der Maaten, “Self-supervised learning of pretext-
invariant representations,” in CVPR, 2020, pp. 6707–6717.

[23] Kaiming He et al., “Momentum contrast for unsupervised visual representation
learning,” in CVPR, 2020, pp. 9729–9738.

[24] Steffen Schneider, Alexei Baevski, Ronan Collobert, and Michael Auli, “wav2vec:
Unsupervised pre-training for speech recognition,” in Interspeech, 2019.

[25] Alexei Baevski et al., “wav2vec 2.0: A framework for self-supervised learning of
speech representations,” in NeurIPS, 2020.

[26] Wei-Ning Hsu et al., “HuBERT: Self-supervised speech representation learning
by masked prediction of hidden units,” arXiv preprint arXiv:2106.07447, 2021.

[27] Alexei Baevski and Abdelrahman Mohamed, “Effectiveness of self-supervised
pre-training for asr,” in ICASSP. IEEE, 2020, pp. 7694–7698.

[28] Zhiyun Fan, Meng Li, Shiyu Zhou, and Bo Xu, “Exploring wav2vec
2.0 on speaker verification and language identification,” arXiv preprint
arXiv:2012.06185, 2020.

[29] Leonardo Pepino, Pablo Riera, and Luciana Ferrer, “Emotion recognition from
speech using wav2vec 2.0 embeddings,” arXiv preprint arXiv:2104.03502, 2021.

[30] Cheng-I Lai et al., “Semi-supervised spoken language understanding via self-
supervised speech and language model pretraining,” in ICASSP. IEEE, 2021, pp.
7468–7472.

[31] Shu wen Yang et al., “SUPERB: Speech Processing Universal PERformance
Benchmark,” in Proc. Interspeech 2021, 2021, pp. 1194–1198.

[32] Sung-Feng Huang et al., “Self-supervised pre-training reduces label permutation
instability of speech separation,” arXiv preprint arXiv:2010.15366, 2020.

[33] Xiao Liu et al., “Self-supervised learning: Generative or contrastive,” IEEE
Transactions on Knowledge and Data Engineering, 2021.

[34] Yu-An Chung et al., “An unsupervised autoregressive model for speech represen-
tation learning,” in INTERSPEECH, 2019.

[35] Yu-An Chung, Hao Tang, and James Glass, “Vector-quantized autoregressive pre-
dictive coding,” in INTERSPEECH, 2020.

[36] Alexander H Liu et al., “Non-autoregressive predictive coding for learning speech
representations from local dependencies,” arXiv preprint arXiv:2011.00406,
2020.

[37] Andy T Liu et al., “Mockingjay: Unsupervised speech representation learning
with deep bidirectional transformer encoders,” in ICASSP. IEEE, 2020, pp. 6419–
6423.

[38] Andy T Liu, Shang-Wen Li, and Hung-yi Lee, “Tera: Self-supervised learning of
transformer encoder representation for speech,” TASLP, vol. 29, pp. 2351–2366,
2021.

[39] Aaron van den Oord, Yazhe Li, and Oriol Vinyals, “Representation learning with
contrastive predictive coding,” arXiv preprint arXiv:1807.03748, 2018.

[40] Morgane Riviere et al., “Unsupervised pretraining transfers well across lan-
guages,” in ICASSP. IEEE, 2020, pp. 7414–7418.

[41] Alexei Baevski et al., “vq-wav2vec: Self-supervised learning of discrete speech
representations,” in ICLR, 2020.

[42] Mathilde Caron et al., “Deep clustering for unsupervised learning of visual fea-
tures,” in ECCV, 2018, pp. 132–149.

[43] Sanyuan Chen et al., “Unispeech-sat: Universal speech representation learning
with speaker aware pre-training,” arXiv preprint arXiv:2110.05752, 2021.

[44] Sanyuan Chen et al., “Wavlm: Large-scale self-supervised pre-training for full
stack speech processing,” arXiv preprint arXiv:2110.13900, 2021.

[45] Mirco Ravanelli et al., “Multi-task self-supervised learning for robust speech
recognition,” in ICASSP. IEEE, 2020, pp. 6989–6993.

[46] Dong Yu et al., “Permutation invariant training of deep models for speaker-
independent multi-talker speech separation,” in ICASSP. IEEE, 2017, pp. 241–
245.

[47] Cassia Valentini-Botinhao et al., “Noisy speech database for training speech en-
hancement algorithms and tts models,” 2017.

[48] Christophe Veaux et al., “The voice bank corpus: Design, collection and data
analysis of a large regional accent speech database,” in O-COCOSDA/CASLRE.
IEEE, 2013, pp. 1–4.

[49] Joachim Thiemann et al., “The diverse environments multi-channel acoustic noise
database (demand): A database of multichannel environmental noise recordings,”
in Proceedings of Meetings on Acoustics ICA2013. Acoustical Society of America,
2013, vol. 19, p. 035081.

[50] Joris Cosentino et al., “Librimix: An open-source dataset for generalizable speech
separation,” arXiv preprint arXiv:2005.11262, 2020.

[51] Vassil Panayotov et al., “Librispeech: an asr corpus based on public domain audio
books,” in ICASSP. IEEE, 2015, pp. 5206–5210.

[52] Gordon Wichern et al., “Wham!: Extending speech separation to noisy environ-
ments,” arXiv preprint arXiv:1907.01160, 2019.

[53] Antony W Rix et al., “Perceptual evaluation of speech quality (pesq)-a new
method for speech quality assessment of telephone networks and codecs,” in
ICASSP. IEEE, 2001, vol. 2, pp. 749–752.

[54] Recommendation ITU-T P ITU, “862.2: Wideband extension to recommendation
p. 862 for the assessment of wideband telephone networks and speech codecs,”
2007.

[55] Cees H Taal et al., “A short-time objective intelligibility measure for time-
frequency weighted noisy speech,” in ICASSP. IEEE, 2010, pp. 4214–4217.

[56] Miao Wang et al., “python-pesq,” https://github.com/ludlows/python-pesq, 2019.

[57] Yao-Yuan Yang et al., “Torchaudio: Building blocks for audio and speech pro-
cessing,” arXiv preprint arXiv:2110.15018, 2021.

[58] Jacob Kahn et al., “Libri-light: A benchmark for asr with limited or no supervi-
sion,” in ICASSP. IEEE, 2020, pp. 7669–7673.

[59] Wei-Ning Hsu et al., “Robust wav2vec 2.0: Analyzing domain shift in self-
supervised pre-training,” arXiv preprint arXiv:2104.01027, 2021.

[60] Manuel Pariente et al., “Asteroid: the PyTorch-based audio source separation
toolkit for researchers,” in Proc. Interspeech, 2020.


	1  Introduction
	2  Related Work
	2.1  Speech separation
	2.2  Speech enhancement

	3  Methodology
	3.1  Self-supervised pretrained models
	3.2  Downstream models for enhancement and separation

	4  Experimental Setup
	4.1  Dataset
	4.2  Evaluation metric
	4.3  Model architecture and finetuning details

	5  Experimental Results
	5.1  Main experiment
	5.2  Ablation studies
	5.2.1  Effect of stride size
	5.2.2  Effect of layer weighting


	6  Conclusion
	7  References

