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ABSTRACT

Single-photon light detection and ranging (lidar) captures
depth and intensity information of a 3D scene. Reconstruct-
ing a scene from observed photons is a challenging task due
to spurious detections associated with background illumina-
tion sources. To tackle this problem, there is a plethora of
3D reconstruction algorithms which exploit spatial regularity
of natural scenes to provide stable reconstructions. However,
most existing algorithms have computational and memory
complexity proportional to the number of recorded photons.
This complexity hinders their real-time deployment on mod-
ern lidar arrays which acquire billions of photons per second.
Leveraging a recent lidar sketching framework, we show that
it is possible to modify existing reconstruction algorithms
such that they only require a small sketch of the photon in-
formation. In particular, we propose a sketched version of
a recent state-of-the-art algorithm which uses point cloud
denoisers to provide spatially regularized reconstructions. A
series of experiments performed on real lidar datasets demon-
strates a significant reduction of execution time and memory
requirements, while achieving the same reconstruction per-
formance than in the full data case.

Index Terms— Inverse problems, single-photon lidar, 3D
reconstruction, compressive learning

1. INTRODUCTION

Single-photon lidar technology enables multiple important
applications, ranging from autonomous driving [1}2]] to trop-
ical archaeology [3|]. This sensing modality can provide
long-range information [4] with millimetre precision [3]
while using eye-safe laser power levels. Depth information
is obtained by measuring the round-trip time-of-arrival (ToA)
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of laser pulses using a time-correlated single-photon counting
system. Recovering 3D information from the photon detec-
tions can be very challenging in scenarios where the number
of collected photons associated with the signal of interest is
very low or in the presence of strong ambient illumination
which generates spurious detections. Leveraging the spa-
tial regularity of natural scenes, several algorithms [6H12]
have been proposed to provide stable 3D reconstructions in
these settings. Existing reconstruction algorithms require ac-
cess to either the ToA of all the detected photons or a ToA
histogram. Both memory requirements and computational
complexity scale at least linearly with these parameters [[13]]
(see fig.[T). This dependency hinders their use in modern lidar
arrays, which record an ever-increasing number of photons
per second [|14].
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Fig. 1. Execution time of RT3D [13|] and the proposed
sketched SRT3D as a function of the mean number of photons
per pixel. RT3D suffers from a linear complexity, whereas
SRT3D only depends on the number of sketches m.

A simple solution to the computational and memory bot-
tlenecks consists of aggregating the fine-resolution timing
data into histograms with a small number of bins, at the cost
of sacrificing depth resolution [15]. This approach results
in a trade-off between compression and temporal resolution,
leading to suboptimal reconstructions which do not make
full use of the high resolution potential of the lidar device.
In contrast, a novel sketching based approach was recently
proposed in [16]] as a solution to the data transfer bottleneck
that does not suffer from an inherent trade-off between com-
pression and temporal resolution. A compact representation
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Fig. 2: 3D reconstructions obtained by the proposed sketched RT3D algorithm for different sketch sizes m and other competing
algorithms. The proposed SRT3D method incorporates spatial regularization, providing stable reconstructions in settings with

low SBR or low number of measured photons.

of the ToA data is computed using the detected photon time-
stamps in an online manner for each individual pixel. The
size of this representation scales with the parameters of the
ToA model (i.e. the positions and intensities of the objects)
and is independent of both the temporal resolution and the
number of photons. However, the reconstruction methods
for sketched data presented in [16] do not incorporate any
spatial regularization (pixels are processed independently),
and thus can provide unstable reconstruction when the signal-
to-background ratio (SBR) is low (see fig. |Z|)

In this paper, we extend the sketched lidar framework to
spatially regularized reconstruction algorithms. In particular,
we present a novel sketched-based real-time algorithm whose
complexity is agnostic of the number of recorded photons.
The proposed algorithm paves the way for real-time 3D re-
construction of complex scenes for any number of recorded
photons. The main contributions of the paper are:

* We propose a novel approach to regularized 3D recon-
struction with memory and computation requirements
that are independent of the total number of observed
photons.

* We evaluate the robustness of the sketched reconstruc-
tion algorithm using real lidar datasets, demonstrating
that the proposed approach achieves the same recon-
struction performance as in the full data case.

The paper is organised as follows. In Section |2} we intro-
duce the sketched lidar framework. In Section 3] we present
a novel reconstruction algorithm with spatial regularization
which only relies on sketched data. In Section[d] we analyse
the performance of the sketched algorithm on synthetic and
real datasets. Conclusions are discussed in Section[3

2. PIXELWISE SKETCHED LIDAR

An individual single-photon lidar pixel is associated with n
time-stamps indicating the ToA of individual photons, which
are denoted by x,, for 1 < p < n. Assuming that there are K
distinct reflecting surfaces in the field of view of the pixel, we
lett = [ti,...,tx] " be a vector containing the depths of the
surfaces, a = [a, ..., ]| where ay is the probability that
the detected photon from the kth surface. We denote by o the
probability that the detected photon is due to the background
illumination. The ToA of the pth photon detected follows a
mixture distribution

K

T(2pla, t) = Z s (Tp|te) + comy(ap),
k=1

ey

where E,Ifzo oy = 1. The distribution of the photons orig-
inating from the signal is defined by ms(x,|t) = h(x, —
t)/H, where the impulse response of the system and its as-
sociated integral are denoted by h and H = ZtT:l h(t), re-
spectively. The distribution of photons originating from back-
ground sources is in general uniformly distributed, 7 (z,) =
1/T over the interval [0,7 — 1] (more complex models can
also be accommodated). The parameters in eq. (I) are sum-
marized by the tuple 6 = (¢, o, o).

Timing information is generally represented either as a list
of n ToA values or aggregated into a ToA histogram with
T’ < T temporal bins [15]. Modern lidar devices acquire
hundreds or thousands of photons n in a short time frame,
which hinders the use of ToA lists as the memory require-
ment scales linearly with the n. Histograms can alleviate the
memory requirement by aggregating photon detections into
coarse temporal bins, i.e.

n
Yo = Z ]lmpe[tg,tg+At] 2
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for ¢ =1,...,T". However, this strategy sacrifices depth res-
olution, leading to suboptimal reconstructions which do not
exploit the full potential of the device.

In order to alleviate the trade-off between memory re-
quirement and depth resolution, [[16]] have recently introduced
a novel representation of the timing information, whose size
is independent of the number of acquired photons and does
not incur in a significant loss of depth resolution. The com-
pact representation, or so-called sketch, is computed as
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for ¢ = 1,...,m where i = /=1 and m is the number
of sketches. As with the coarse histogram, the sketch has
the favourable property that it can be updated in an online
fashion with each incoming photon throughout the duration
of the acquisition time. Thereafter, only the resultant sketch
z=[21,...,2]" € C™ needs to be stored and/or transferred
off-chip to further estimate the parameters 6 of the observa-
tion model.

The sketch is equivalent to the empirical characteris-
tic function sampled at frequencies wy, where ¥y(w) =
E,.€“? is the corresponding expected characteristic func-
tion (CF) [[18]. The CF has the special property that it exists
for all probability distributions and captures all the informa-
tion of the distribution, providing a one-to-one correspon-
dence. The CF of the observation model in (1)) is given by

K
Up(w) = Z arh(w)e! + ag sine(wT'/2), “4)
k=1

where h denotes the (discrete) Fourier transform of the im-
pulse response function h. It is well documented in the em-
pirical characteristic function (ECF) literature e.g. [19]], that
a sketch z computed over a finite dataset X = {z1,...,2,},
satisfies the central limit theorem. Formally, the sketch z con-
verges asymptotically to a Gaussian random variable

2 &% N (Ug,n15y), (5)

where ¥y € C™*™ depends on Wy(w). Thus, the sketched
lidar inference task reduces to solving the following optimiza-
tion problem
argminn||z — Uy l|3y, 6)
0

where W € C™*™ is a positive definite Hermitian weighting
matrix, which can be chosen as the identity matrix for reduced
computational load or the precision matrix W = X/ ! for
higher statistical efficiency.

The sampling scheme proposed in [[16] chooses the fre-
quencies wy = 2w¢/T for ¢ € [1,T — 1], such that Uy in
eq. (4) is only sampled at regions where sinc(w7'/2) = 0, and
the resulting sketch is effectively blind to background noise.

Fundamentally, the size of the sketch m scales with the de-
gree of parameters in the observation model (i.e. the number
of surfaces in the scene) and, crucially, is independent of both
the depth resolution and the number of photons n. Sketch-
ing therefore enables significant compression of the ToA data
without sacrificing temporal resolution or estimation accu-
racy. In the next section, we show how spatial regularization
can also be incorporated to the sketching framework.

3. MULTIPIXEL SKETCHED LIDAR

Single-photon lidar devices acquire an array of N, x N.
pixels. We encompass all the parameters in a scene into
0 = (01.1,...,0n,..n.). Due to the spatial regularity of nat-
ural scenes, parameters in neighbouring pixels are generally
strongly correlated. This prior knowledge is exploited by
several 3D reconstruction algorithms to improve the qual-
ity with respect to simple pixelwise depth estimation. Most
algorithms solve the following optimization problem [2]

Ny,Ne

arg min > fy, (0i5) + p(6) (7)
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where y, ; denotes the observed histogram at the (4,7)th
pixel, fyi,j (0;,;) are per-pixel data fidelity terms (negative
log-likelihood of the ToA list or histogram observation mod-
els), and p(0) is a spatial regularization term which encodes
the prior information about the spatial regularity of typi-
cal scenes. There has been significant efforts dedicated to
the design of powerful regularizations p(6). The RT3D
algorithm [/13]] exploits the plug-and-play framework [20] to-
gether with a fast computer-graphics point cloud denoiser to
design a regularizer that can capture the geometry of complex
scenes with K > 1 surfaces per pixel, while achieving real-
time performance. However, existing algorithms (including
RT3D) require multiple evaluations of the data fidelity terms,
and thus suffer from large memory requirements and a com-
putational complexity which is at least linear in the number
of photon detections or histogram bins [[13].

Here we propose to replace the histogram-based loss
in eq. for the more compact sketch loss in eq. (6), while
leveraging the spatial regularization penalty of existing meth-
ods. The proposed objective can be expressed as

Nr,Nc
argemin Z m,szi_j — \Ilgid H%\C; + p(0) (8)
i,j

where z; ; is the sketch associated with the (¢, j)th pixel. The
number of detected photons 7, ; controls the trade-off be-
tween the data-fidelity and regularization terms. As the num-
ber of detected photons increases, the data fidelity term dom-
inates eq. (8), which tends to the non-regularized problem
ineq. (6). In order to perform real-time reconstruction with an
arbitrary number of photon detections, we propose a sketched



version of the RT3D algorithm, which we name SRT3D. The
proposed algorithm replaces the histogram-based likelihood
of RT3D for the sketched loss of eq. (8) with W ; set as the
identity matrix for reduced computational load.

4. EXPERIMENTS

We evaluate the proposed SRT3D algorithm on two real
datasets: a polystyrene head at a distance of 40 metres [7|]
and a scene with two people walking behind a camouflage
net at a distance of 320 metres [13]. We compare the pro-
posed method with 3 other algorithms: traditional cross-
correlation [5] (XCORR), pixelwise sketched reconstruc-
tion [[16] (SMLE) which doesn’t exploit spatial regularization
(also with W set as the identity), and RT3D which accesses
the full fine-resolution ToA data. All the experiments were
performed using an NVIDIA RTX 3070 laptop GPU.

The polystyrene head dataset has size of 141 x 141 pix-
els with T' = 4613. Most of the pixels in this scene con-
tain exactly K = 1 surface. A ground-truth reference was
obtained using using the standard cross-correlation algorithm
on the raw ToA information (with high number of photons per
pixel and high SBR). Using this reference and the observation
model in eq. (I)), we synthesized multiple datasets for differ-
ent mean photons per pixel n and SBR levels. Figure 2] shows
the 3D reconstructions obtained for SBR levels of 10, 1 and
0.1. All methods perform similarly when the number of pho-
tons and SBR are large. Interestingly, only m = 5 sketches
are enough to provide good reconstructions. However, when
the scene contains a low number of photons or low SBR, pix-
elwise methods fail to provide good reconstructions, whereas
both RT3D and SRT3D provide good reconstructions. In this
challenging setting, a sketch of size m = 10 sufficiently pro-
vides a reconstruction that has the same quality as the ones
obtained in the full data case. True and false detections, depth
absolute error (DAE), and normalised intensity absolute error
(IAE) (as defined in [13]]) are presented in fig. for an SBR
of 1 and different number of photons per pixel.
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Fig. 3: Performance of the evaluated algorithms for the
polystyrene head dataset with SBR=1.

Figure [T] shows the execution time of RT3D and SRT3D
as a function of the mean number of photons per pixel in the
polystyrene head datasets. The GPU memory requirements of
RT3D become prohibitive if the number of observed photons
is in the order of hundreds per pixel per frame, whereas the
sketched version has a complexity which is agnostic of the
number of photons, and can handle any number of photons in
real-time. Table[T]shows the execution time of SRT3D for in-
creasing array sizes, demonstrating that the proposed method
can process up to 705 x 705 arrays at 14 frames per second
on a laptop computer. The datasets were generated by up-
sampling the head reference before the synthesis of photon
detections.

mipixels | 1412 | 2822 | 4232 | 5642 | 7052
m=>5 6 12 28 55 68
m = 10 7 18 35 60 88

Table 1: Execution time in milliseconds for different scene
sizes in pixels obtained by the proposed sketched RT3D algo-
rithm for sketch sizes m of 5 and 10.

Figure [4] shows the reconstructions by SRT3D and RT3D
of one time frame of the camouflage dataset in [[13]], which is
composed of 32 x 32 pixels with 7" = 153. Most of the pixels
in the scene contain X = 2 surfaces, which makes the recon-
struction task more challenging. However, m = 10 sketches
are again sufficient to provide the same reconstruction quality
as using the full 153 bins. Although the original fine resolu-
tion 7' is not large, the execution time of SRT3D with m = 10
was 12 ms, whereas for RT3D it was 20 ms.

RT3D SRT3D (m=10)

Fig. 4: Reconstruction of the scene in [|13]] with 2 surfaces
per pixel by the original RT3D and its sketched version. Us-
ing only m = 10 sketches is enough to provide the same
reconstruction quality.

5. CONCLUSIONS AND FUTURE WORK

We have extended the sketched lidar framework to incor-
porate spatial regularization, demonstrating stable recon-
structions in the presence of strong ambient illumination.
While our results focus on a sketched version of the RT3D



algorithm, the ideas presented here can be used to develop
sketched versions of other existing regularized methods.

Acknowledgements

We would like to thank the single-photon group of Heriot-
Watt University for the head and camouflage data.

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

6. REFERENCES

J. Hecht, “Lidar for self-driving cars,” Optics and Pho-
tonics News, vol. 29, no. 1, pp. 26-33, 2018.

J. Rapp, J. Tachella, Y. Altmann, S. McLaughlin, and
V. K. Goyal, “Advances in single-photon lidar for au-
tonomous vehicles: Working principles, challenges, and

recent advances,” IEEE Signal Processing Magazine,
vol. 37, no. 4, pp. 62-71, 2020.

M. A. Canuto, F. Estrada-Belli, T. G. Garrison,
S. D. Houston, M. J. Acufia, M. Kova¢, D. Marken,
P. Nondédéo, L. Auld-Thomas, C. Castanet, D. Chate-
lain, C. R. Chiriboga, T. Drdpela, T. Lieskovsky,
A. Tokovinine, A. Velasquez, J. C. Ferndndez-Diaz,
and R. Shrestha, “Ancient lowland Maya complex-
ity as revealed by airborne laser scanning of northern
Guatemala,” Science, vol. 361, no. 6409, 2018.

A. M. Pawlikowska, A. Halimi, R. A. Lamb, and G. S.
Buller, “Single-photon three-dimensional imaging at up
to 10 kilometers range,” Opt. Express, vol. 25, no. 10,
pp- 11919-11931, May 2017.

A. McCarthy, R. J. Collins, N. J. Krichel, V. Fernandez,
A. M. Wallace, and G. S. Buller, “Long-range time-
of-flight scanning sensor based on high-speed time-
correlated single-photon counting,” Appl. Opt., vol. 48,
no. 32, pp. 6241-6251, Nov 2009.

D. Shin, A. Kirmani, V. K. Goyal, and J. H. Shapiro,
“Photon-efficient computational 3-D and reflectivity
imaging with single-photon detectors,” IEEE Trans.
Comput. Imaging, vol. 1, no. 2, pp. 112-125, 2015.

Y. Altmann, X. Ren, A. McCarthy, G. S. Buller, and
S. McLaughlin, “Lidar waveform-based analysis of
depth images constructed using sparse single-photon
data,” IEEE Trans. Image Process., vol. 25, no. 5, pp.
1935-1946, 2016.

——, “Target detection for depth imaging using sparse
single-photon data,” in Proc. IEEE Int. Conf. on Acous-
tics, Speech and Signal Processing (ICASSP), March
2016, pp. 3256-3260.

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

(20]

D. Shin, F. Xu, F. N. Wong, J. H. Shapiro, and
V. K. Goyal, “Computational multi-depth single-photon
imaging,” Optics express, vol. 24, no. 3, pp. 1873-1888,
2016.

J. Rapp and V. K. Goyal, “A few photons among many:
Unmixing signal and noise for photon-efficient active
imaging,” IEEE Trans. Comput. Imaging, vol. 3, no. 3,
pp. 445-459, Sept 2017.

D. B. Lindell, M. O’Toole, and G. Wetzstein, “Single-
Photon 3D Imaging with Deep Sensor Fusion,” ACM
Trans. Graph. (SIGGRAPH), no. 4, 2018.

J. Tachella, Y. Altmann, X. Ren, A. McCarthy, G. S.
Buller, J.-Y. Tourneret, and S. McLaughlin, “Bayesian
3D reconstruction of complex scenes from single-

photon lidar data,” SIAM Journal on Imaging Sciences,
2019.

J. Tachella, Y. Altmann, N. Mellado, A. McCarthy,
R. Tobin, G. S. Buller, J. Tourneret, and S. McLaughlin,
“Real-time 3D reconstruction from single-photon lidar
data using plug-and-play point cloud denoisers,” Nature
communications, vol. 10, no. 1, pp. 1-6, 2019.

S. Royo and M. Ballesta-Garcia, “An overview of lidar
imaging systems for autonomous vehicles,” Applied Sci-
ences, vol. 9, no. 19, 2019.

R. K. Henderson, N. Johnston, H. Chen, D. D. Li,
G. Hungerford, R. Hirsch, D. McLoskey, P. Yip, and
D. J. S. Birch, “A 192x128 time correlated single pho-
ton counting imager in 40nm CMOS technology,” in ES-
SCIRC 2018 - IEEE 44th European Solid State Circuits
Conference (ESSCIRC), 2018, pp. 54-57.

M. Sheehan, J. Tachella, and M. E. Davies, “A sketching
framework for reduced data transfer in photon count-
ing lidar,” IEEE Trans. on Comp. Imag. (Early Access),
2021.

Y. Altmann and S. McLaughlin, “Range estimation
from single-photon lidar data using a stochastic em ap-
proach,” in 2018 26th European Signal Processing Con-
ference (EUSIPCO), 2018, pp. 1112-1116.

M. Carrasco and J. P. Florens, “Generalization of GMM
to a continuum of moment conditions,” Econometric
Theory, pp. 797-834, 2000.

A. Hall, Generalized Method of Moments. Oxford Uni-
versity Press, 11 2007, pp. 230 — 255.

S. V. Venkatakrishnan, C. A. Bouman, and B. Wohlberg,
“Plug-and-play priors for model based reconstruction,”
in 2013 IEEE Global Conference on Signal and Infor-
mation Processing, 2013, pp. 945-948.



	1  Introduction
	2  Pixelwise Sketched Lidar
	3  Multipixel sketched lidar
	4  Experiments
	5  Conclusions and future work
	6  References

