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ABSTRACT

Deep generative models (DGMs) and their conditional
counterparts provide a powerful ability for general-purpose
generative modeling of data distributions. However, it re-
mains challenging for existing methods to address advanced
conditional generative problems without annotations, which
can enable multiple applications like image-to-image trans-
lation and image editing. We present a unified Bayesian
framework for such problems, which introduces an inference
stage on latent variables within the learning process. In par-
ticular, we propose a variational Bayesian image translation
network (VBITN) that enables multiple image translation
and editing tasks. Comprehensive experiments show the ef-
fectiveness of our method on unsupervised image-to-image
translation, and demonstrate the novel advanced capabilities
for semantic editing and mixed domain translation.

Index Terms— DGMs, conditional generative problems,
Bayesian framework, variational inference.

1. INTRODUCTION

Deep generative models (DGMs) [1, 2] are popular ways to
learn complicated data distributions in an unsupervised man-
ner. However, they have less promising capabilities towards
the generation of conditional distributions, and are hard to
scale to different problems in a consistent scheme. The re-
lated techniques include image-to-image translation and im-
age editing, enabling a wide range of applications such as su-
per resolution [3], image colorization [4, 5], image inpaint-
ing [6, 7], and semantic attribute synthesis [8, 9].

Different strategies have been proposed to improve the
scalability of DGMs towards conditional distributions. Early
conditional generative methods, like Conditional GAN [10]
and Info GAN [11], use supervised annotations from the tar-
get distribution. While successful in basic conditional gen-
erative problems, these methods are insufficient towards ad-
vanced problems without direct annotations, such as unsuper-
vised image-to-image generation. Existing techniques tackle
this problem by adding constraints in either the image space
or a low-dimensional latent space [12,13]. However, a unified

framework for the underlying generative process of different
semantic variables is seldom claimed, resulting in redundant
fine-tunning work and limited scalability towards advanced
tasks in a consistent scheme.

From a statistical viewpoint, these problems can be de-
scribed well by a latent variable model (LVM). Specifically,
semantic features can be viewed as latent variables while the
generation can be conducted by inferring the conditional dis-
tribution of images given the variables corresponding to de-
sired semantics. The idea of disentangling codes for different
semantics is partially discussed by [14, 15], while seldom de-
rived from first principles via statistic modeling.

In this paper, we present a novel probabilistic framework
for a general class of conditional image generative problems.
We then propose a deep generative network for image trans-
lation tasks, where latent variables of semantics are inferred
via a variational lower bound in learning. Driven by a rig-
orous probabilistic model, the proposed method has a clear
interpretation and improved generality to encompass multiple
variants. Experimental results show that the proposed method
achieves comparable performance with classic frameworks on
unsupervised image-to-image translation, and enables novel
variants like mixed domain translation.

2. BAYESIAN FRAMEWORK FOR IMAGE
GENERATION WITH LATENT VARIABLES

We present a Bayesian framework for conditional image
generation with respect to two latent variables, representing
domain-related and domain-unrelated semantics respectively.

2.1. Bayesian Model for Image Generation

Suppose the generative process of an image sample x(k) ∈ X
in certain domain involves two latent variables: a domain-
related variable y that describes features specific to the do-
main, and an independent domain-unrelated variable z that
describes general features. We refer to the domain-related
variable as ’style’ and the domain-unrelated variable as ’con-
tent’, following the classical nomenclature in [16].



2.2. Unsupervised Image-to-Image Translation

Consider a dataset XS = {x(k)
S }Nk=1 consisting of N i.i.d.

samples of a random variable xS corresponding with domain
S, and a dataset XT = {x(l)

T }Ml=1 consisting of M i.i.d. sam-
ples of xT corresponding with domain T . The content vari-
ables zS and zT corresponding with domains S and T share
the same prior distribution p(z), while the style variables yS

and yT corresponding with these domains have different dis-
tributions, denoted as p(yS) and p(yT ), respectively.

The translation process from an image x(k)
S in domain S to

its counterpart x(k)
S→T in domain T , consists of three sequen-

tial steps: 1) A value y(k)T for style variable is generated from
distribution p(yT ) corresponding with domain T ; 2) A value
z(k)S for content variable is generated from the conditional dis-
tribution p(z|x(k)

S ); and 3) A translated image x(k)
S→T is gen-

erated from the conditional distribution p(xT |y(k)T , z(k)S ).

2.3. Multiple Variants

The proposed model also enables to develop variants, achieved
by modifications in the three steps above. We introduce three
such variants, which can be further combined and varied.

Multi-modal style editing. The information for style se-
mantics in the first step are obtained by sampling the distri-
bution of the style variable, resulting in a spectrum of values.
The translated image with these values can result in the gen-
eration of images with multi-modal styles, i.e.,

y(k1)
T , . . . , y(kl)

T ∼ p(yT ), (1)

with the other steps stay unchanged, images of l different
styles in domain T x(k1)

S→T , . . . , x(kl)
S→T can be generated.

Multi-modal content editing. The information for con-
tent semantics in the second step are obtained by sampling the
distribution of the content variable, resulting in a spectrum of
values. The generation with these values can result in images
of multi-modal contents, i.e.,

z(k1)
S , . . . , z(km)

S ∼ p(z|x(k)
S ), (2)

with the other steps stay unchanged, images of m content
variants x(k1)

S→T , . . . , x(km)
S→T can be achieved.

Mixed domain translation. The semantics determined
by the style variable can represent a mixed style from more
than one target domains, resulting in translated image in a
mixed domain. The distribution for the mixed style can be
constructed as the weighted sum of style distributions, i.e.,

y(k)Mix ∼ p(yMix) =

n∑
i=1

wip(yTn),

n∑
i=1

wi = 1, (3)

where wi, i = 1, . . . , n are the weight values for these styles,
e.g. wi = 1/n, i = 1, . . . , n.

3. VARIATIONAL BAYESIAN IMAGE
TRANSLATION NETWORK

In this section, the variational Bayesian (VB) method is intro-
duced and implemented to conduct image translation tasks.

3.1. Variational Bayesian Method

According to the VB technique, we construct a distribution
q(y, z|x) to approximate the true posterior p(y, z|x). Fol-
lowing the mean field approximation, we assume that

q(y, z|x) = q(y|x)q(z|x). (4)

The following proposition shows the lower bound of the
log-likelihood log p(x) of each sample in the LVM.

Proposition 1. Given the Bayesian model for image
translation and the variational distribution q on latent vari-
ables, the evidence lower bound (ELBO) L of log-likelihood
log p(x) is expressed as follows,

L(p, q;x) =Eq(y,z|x)
[
log p(x|y, z)

]
−KL

(
q(y|x)

∣∣∣∣p(y))−KL
(
q(z|x)

∣∣∣∣p(z))
(5)

where KL is the Kullback-Leibler (KL) divergence.
Such bound can be used to find a suitable approximated

distribution q∗ that matches the true distribution p in general.

3.2. Neural Modules for Distributions

We construct neural modules to represent the unknown p and
the variational distribution q. In particular, the likelihood
distribution is assumed to come from a parametric family
pθ(x|y, z) learned by a decoder network gθ, while the varia-
tional posterior distribution is from qφ(y, z|x) learned by an
encoder network fφ. Combing the neural modules, we can
construct a modified VAE to learn variational parameter φ
jointly with the likelihood parameter θ via the lower bound.

The likelihood distribution is from the parametric family,
learned by the decoder network gθ as follows,

x(k) = gθ(y(k), z(k)) ∼ pθ(x|y(k), z(k)) (6)

According to the properties of the latent variables, we as-
sume the prior distributions are as follows:

p(y) = N (α, I), p(z) = N (0, I) (7)

where y,α ∈ RDs , z ∈ RDc and α is domain-related. The
choices of domain parameter αS ,αT can be arbitrary as long
as αS 6= αT .

The approximated posterior distributions in this case are
also Gaussian with learned parameters by network fφ,

qφs
(y|x) = N (y; µ̂s, σ̂

2
sI), qφc

(z|x) = N (z; µ̂c, σ̂
2
cI)

(8)
where µ̂s, σ̂

2
s ∈ RDs and µ̂c, σ̂

2
c ∈ RDc .



Fig. 1. The network architecture of the proposed VBITN. The framework consists of VAE-based networks which individually
extract latent variables from different domain images. Then the learned latent variables are combined to generate new images.

Table 1. LPIPS [17] and AMT [18] scores for different methods on unsupervised image-to-image translation on dataset
’Monet’s painting↔Photo’. The best two results are highlighted in red and blue colors respectively.

METHOD
PHOTO→MONET’S PAINTING MONET’S PAINTING→PHOTO

LPIPS (DIVERSITY) AMT (REALISM) LPIPS (DIVERSITY) AMT (REALISM)

CYCLEGAN [12] .6705± .0025 37.28±2.26% .6604± .0031 17.58±2.24%
BICYCLEGAN [19] .5982± .0026 19.31±1.89% .5805± .0026 15.46±2.43%
DISCOGAN [20] .6775±.0026 31.49±2.67% .6667± .0027 24.43±3.01%
DUALGAN [21] .6957±.0029 15.84±2.28% .7012±.0030 19.29±2.13%
UNIT [13] .6734± .0026 34.22±2.46% .6661± .0024 21.43±1.89%
MUNIT [14] .4544± .0028 17.86±2.89% .6536± .0027 13.85±2.75%
VBITN (OURS) .6997± .0024 38.62±2.24% .6725± .0022 27.30±1.87%

3.3. Parametric Form of ELBO

To utilize the gradient descent algorithm for network learning,
we derive the analytical version of the variational lower bound
with respect to parameters φ and θ, expressed as follows,

L(φ,θ;x) = Eqφ(y,z|x)
[
log pθ(x|y, z)

]
−KL

(
qφ(y|x)

∣∣∣∣p(y))−KL
(
qφ(z|x)

∣∣∣∣p(z))
(9)

The last two terms can be integrated analytically with the
Gaussian assumptions. The first term is evaluated as follows,

Eqφ(y,z|x)
[
log pθ(x|y, z)

]
=

1

L

L∑
l=1

log pθ(x|y(l), z(l))

(10)
where ε(l) ∼ N (0, I), y(l) = µ̂s + σ̂

2
s � ε(l), z(l) = µ̂c +

σ̂2
c � ε(l) using the so-called reparameterization trick [2].

3.4. Network Learning

Suppose we are given a dataset XS from the source domain,
and N unpaired datasets {XTi}Ni=1 from the target domains.

The target is to translate some sample x
(k)
S from domain S to

its counterpart with the mixed style of the regarding target do-
mains. We adopt a compound loss with three terms: an inter-
domain loss Lind for latent variables inference, an adversarial
loss Ladv to enforce realism of the translated images, and a
reconstruction loss Lrec in for latent variable regularization.

DenoteφS and θS for parameters of domain S, whileφTi

and θTi for domain Ti. We first implement the inter-domain
loss Lind as the expectation of negative inter-domain bounds
on corresponding datasets:

Lind =EXS

[
L(θS ,φS ;x)

]
+

N∑
i=1

EXTi

[
L(θTi ,φTi

;x)
]
.

(11)
The next two terms, Lrec and Ladv are constructed to form

regularization in both latent space and image space to con-
straint learning, expressed as follows,

Lrec =

N∑
i=1

EXS→Ti
EqφS

(z|x)
[
‖z− zS‖2

]
+ E∼XS→Ti

EqφTi
(y|x)

[
‖y − yTi

‖2
]
.

(12)



(a)

(b)

Fig. 2. VBITN enables efficient unsupervised image-to-image translation as well as semantic editing and mixed domain trans-
lation: (a) Paintings are translated to photos with different semantics; (b) Mixed domain translation on human face attributes.

Ladv, d =

N∑
i=1

EXTi

[
log
(
1−Dϕ

(
x
))]

+ EXS→Ti

[
logDϕ(x)

]
(13)

where Dϕ(·) denotes the discriminator network with param-
eter ϕ to distinguish between true and generated images.

4. EXPERIMENTS

4.1. Experimental Setup

We compare our Bayesian framework on image translation
task with several classic methods, including Cycle GAN [12],
Bicycle GAN [19], Disco GAN [20], Dual GAN [21] utiliz-
ing cycle-consistency techniques, and UNIT [13] and MU-
NIT [14] utilizing latent representation techniques1.

We evaluate our techniques on the ’Monet’s painting ↔
photo’ dataset and CelebA dataset [25], all at resolution of
128px. Quantitative comparisons with related methods are
conducted by the Learned Perceptual Image Patch Similarity
(LPIPS) distance [17] for diversity, and Amazon Mechanical
Turk (AMT) perceptual [18] for realism, claimed sufficient in
other literature.

1Note that only classic framework-level methods for the basic image-to-
image translation are adopted as baselines. More advanced works like Style-
GAN [22, 23] and StarGAN [24] are not compared and can be viewed as
implementable techniques on any basic frameworks.

4.2. Unsupervised Image-to-Image Translation

Table 1 reports the achieved performance different methods
on LPIPS metric and AMT studies. We observe that our com-
petitors tend to suffer from a trade-off between diversity and
realism, though achieve remarkable results in one of the met-
rics. Our method gets the best of both sides, as it encourages
diverse outputs with semantic variables and also has a well-
defined objective function for regularization.

4.3. Multiple Variants

Qualitative results of our method on semantic editing are
shown in Figure 2(a). We observe that both content and
style semantics of the generated image can have meaningful
variants with little cost to quality. Figure 2(b) shows our
test on the novel mixed domain translation. The domain-
related attributes (style) ’male’, ’hat’ and ’beard’ have been
successfully translated, while the domain-unrelated attributes
(content) like ’looks’ and ’expressions’ are randomly sam-
pled. Our method can produce translated image with multiple
attributes with sharp edges and reliable details.

5. CONCLUSION

We introduced a Bayesian framework for conditional gener-
ative problems, and proposed VBITN for related tasks. The
contributions include regularizing the ill-posed nature of im-
age translation, and enabling novel capabilities like semantic
editing. Future work will tackle more scalable frameworks
via delicate designs in latent space and graphic model.



6. REFERENCES

[1] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu,
D. Warde-Farley, S. Ozair, A. C. Courville, and Y. Ben-
gio, “Generative adversarial nets,” in NIPS, 2014.

[2] D. P. Kingma and M. Welling, “Auto-encoding varia-
tional bayes,” CoRR, vol. abs/1312.6114, 2014.

[3] C. Ledig, L. Theis, F. Huszár, J. Caballero, A. Aitken,
A. Tejani, J. Totz, Z. Wang, and W. Shi, “Photo-realistic
single image super-resolution using a generative adver-
sarial network,” 2017 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 105–114,
2017.

[4] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros, “Image-
to-image translation with conditional adversarial net-
works,” 2017 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 5967–5976, 2017.

[5] R. Zhang, J.-Y. Zhu, P. Isola, X. Geng, A. Lin, T. Yu, and
A. A. Efros, “Real-time user-guided image colorization
with learned deep priors,” ACM Trans. Graph., vol. 36,
pp. 119:1–119:11, 2017.

[6] C. Yang, X. Lu, Z. L. Lin, E. Shechtman, O. Wang, and
H. Li, “High-resolution image inpainting using multi-
scale neural patch synthesis,” 2017 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pp.
4076–4084, 2017.

[7] G. Liu, F. Reda, K. Shih, T. Wang, A. Tao, and B. Catan-
zaro, “Image inpainting for irregular holes using partial
convolutions,” ArXiv, vol. abs/1804.07723, 2018.

[8] T. Wang, M.-Y. Liu, J.-Y. Zhu, A. Tao, J. Kautz, and
B. Catanzaro, “High-resolution image synthesis and
semantic manipulation with conditional gans,” 2018
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 8798–8807, 2018.

[9] T. Park, M.-Y. Liu, T. Wang, and J.-Y. Zhu, “Semantic
image synthesis with spatially-adaptive normalization,”
2019 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 2332–2341, 2019.

[10] M. Mirza and S. Osindero, “Conditional generative ad-
versarial nets,” ArXiv, vol. abs/1411.1784, 2014.

[11] X. Chen, Y. Duan, R. Houthooft, J. Schulman,
I. Sutskever, and P. Abbeel, “Infogan: Interpretable rep-
resentation learning by information maximizing genera-
tive adversarial nets,” in NIPS, 2016.

[12] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros, “Unpaired
image-to-image translation using cycle-consistent ad-
versarial networks,” 2017 IEEE International Confer-
ence on Computer Vision (ICCV), pp. 2242–2251, 2017.

[13] M.-Y. Liu, T. Breuel, and J. Kautz, “Unsupervised
image-to-image translation networks,” in NIPS, 2017.

[14] X. Huang, M.-Y. Liu, S. J. Belongie, and J. Kautz,
“Multimodal unsupervised image-to-image translation,”
in ECCV, 2018.

[15] T. Park, J.-Y. Zhu, O. Wang, J. Lu, E. Shechtman, A. A.
Efros, and R. Zhang, “Swapping autoencoder for deep
image manipulation,” ArXiv, vol. abs/2007.00653, 2020.

[16] L. A. Gatys, A. S. Ecker, and M. Bethge, “Image
style transfer using convolutional neural networks,”
2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 2414–2423, 2016.

[17] R. Zhang, P. Isola, A. A. Efros, E. Shechtman, and
O. Wang, “The unreasonable effectiveness of deep fea-
tures as a perceptual metric,” 2018 IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, pp.
586–595, 2018.

[18] R. Zhang, P. Isola, and A. A. Efros, “Colorful image
colorization,” in ECCV, 2016.

[19] J.-Y. Zhu, R. Zhang, D. Pathak, T. Darrell, A. A.
Efros, O. Wang, and E. Shechtman, “Toward multi-
modal image-to-image translation,” in NIPS, 2017.

[20] T. Kim, M. Cha, H. Kim, J. K. Lee, and J. Kim, “Learn-
ing to discover cross-domain relations with genera-
tive adversarial networks,” ArXiv, vol. abs/1703.05192,
2017.

[21] Z. Yi, H. Zhang, P. Tan, and M. Gong, “Dualgan: Unsu-
pervised dual learning for image-to-image translation,”
2017 IEEE International Conference on Computer Vi-
sion (ICCV), pp. 2868–2876, 2017.

[22] T. Karras, S. Laine, M. Aittala, J. Hellsten, J. Lehti-
nen, and T. Aila, “Analyzing and improving the im-
age quality of stylegan,” 2020 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pp.
8107–8116, 2020.

[23] T. Karras, S. Laine, and T. Aila, “A style-based gen-
erator architecture for generative adversarial networks,”
2019 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 4396–4405, 2019.

[24] Y. Choi, M.-J. Choi, M. Kim, J.-W. Ha, S. Kim, and
J. Choo, “Stargan: Unified generative adversarial net-
works for multi-domain image-to-image translation,”
2018 IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 8789–8797, 2018.

[25] Z. Liu, P. Luo, X. Wang, and X. Tang, “Deep learn-
ing face attributes in the wild,” 2015 IEEE International
Conference on Computer Vision (ICCV), pp. 3730–
3738, 2015.


