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ABSTRACT
Large-scale audio tagging datasets inevitably contain imper-
fect labels, such as clip-wise annotated (temporally weak)
tags with no exact on- and offsets, due to a high manual la-
beling cost. This work proposes pseudo strong labels (PSL),
a simple label augmentation framework that enhances the su-
pervision quality for large-scale weakly supervised audio tag-
ging. A machine annotator is first trained on a large weakly
supervised dataset, which then provides finer supervision for
a student model. Using PSL we achieve an mAP of 35.95
balanced train subset of Audioset using a MobileNetV2 back-
end, significantly outperforming approaches without PSL. An
analysis is provided which reveals that PSL mitigates missing
labels. Lastly, we show that models trained with PSL are also
superior at generalizing to the Freesound datasets (FSD) than
their weakly trained counterparts.

Index Terms— Relabeling, Audio tagging, Convolu-
tional neural networks, Label augmentation

1. INTRODUCTION

Automatic audio pattern recognition is an important research
topic, which enables machines to fully interact with the audi-
tory world. A basic task within audio pattern recognition is
to distinguish between different audio event types e.g., iden-
tifying speech, hearing an explosion, which is referred to as
Audio tagging (AT). Most AT datasets are either labeled with
strong supervision providing precise on- and offsets for each
label or temporally weak-labeled, where tags are provided for
each audio clip. Due to the high acquisition cost of strongly
supervised labels, weakly supervised labels are a common oc-
currence when scaling to large datasets. The largest and most
popular dataset for large-scale weakly supervised AT is Au-
dioset, which consists of clip-level annotated 10 seconds long
samples with 527 classes. Audioset’s weak labels contain
many flaws, such as incompleteness (missed labels), ambi-
guity (“Speech” and “Conversation”), incorrectness, and the
previously mentioned lack of access to precise timestamps1.

While there exists plenty research on Audioset regard-
ing improving performance using sophisticated models [2,
3, 4, 5, 6, 7, 8], research concerned with the weak labeling

1A strongly-labeled subset [1] for 200 h (4%) of the 5200 h exists.
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Fig. 1. The proposed pseudo strong labels (PSL) framework
with a comparison to ReLabel [10] in the Vision domain. A
machine annotator is pre-trained on a large dataset using weak
labels, which then re-estimates soft labels for fixed-sized seg-
ments.

problem is scarce. Relevant work regarding label enhance-
ment includes [9], where the authors proposed the Sequen-
tial Self-Teaching (SUSTAIN) framework, an iterative label-
update framework aimed at reducing label-noise. SUSTAIN
showed a relative performance gain of up to 9% (36.6→ 39.8)
on the public Audioset evaluation dataset. On the contrary,
work in [3] has shown that automatic label enhancement via
a machine annotator leads to potential performance degrada-
tion (43.9 → 39.3) on the public evaluation set, which indi-
cates that the presence of label-noise in Audioset is a major
problem.

In our point of view, one problem worth exploring is the
supervision strength, i.e., if labels provided on a shorter time
resolution are superior to clip-level tags. This work aims to
ameliorate the problems of label noise and insufficient super-
vision by proposing a simple label augmentation framework.
Our framework uses a pre-trained machine annotator to rela-
bel a target dataset on a smaller fixed-sized time scale. We
name our approach pseudo strong labels (PSL) since the rela-
beled dataset consists of soft labels on a finer time resolution.
This paper is organized as follows. Section 2 describes our
proposed approach and Section 3 lays out the experimental
details. Results are presented in Section 4 and a conclusion is
provided in Section 5.
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2. METHOD

The PSL approach pre-trains a machine annotator (MA) on
a source dataset with temporally weak supervision. Having
trained the MA, soft labels are re-estimated on a target time-
scale e.g., 2 s, by feeding 2 s segments to the model. Finally,
a student model is trained on this relabeled dataset. The train-
ing objective for annotator and student is binary cross entropy
(BCE) defined as:

LBCE(x,y) = y log ŷ + (1− y) log(1− ŷ),

ŷ = F(x),

where x is an input feature of some length, y ∈ [0, 1]C the
corresponding label, F the trainable neural network, and ŷ ∈
[0, 1]C the model prediction with C = 527 classes.

We denote yn
weak as a weak label provided on a time-scale

n (measured in seconds), with a corresponding input segment
of equal length xn e.g., y10

weak represent the original clip-level
labels in Audioset. Note that in cases where n < 10, we
simply propagate the weak labels to match the input-segment
duration and thus optimize LBCE(x

n,yn
weak). Similarly, we

denote ŷn
PSL as a soft label provided by the MA on a time-

scale n.
MA training uses the original, weak labels y10

weak ∈
{0, 1}C and training the student model uses the relabeled
ŷn

PSL ∈ [0, 1]C . A description of the PSL framework is pro-
vided in Figure 1. Note that PSL training discards the original
labels, but we provide an ablation study of jointly using both
original and predicted labels in Section 4.2.

3. EXPERIMENTS

We explore three segment lengths for PSL: 2, 5, and 10 sec-
onds denoted as PSL-2s, PSL-5s, and PSL-10s, respectively.
Note that PSL-ns denotes the model trained with labels ŷn

PSL.
PSL-10s can be viewed as a naı̈ve (weak) relabeling method,
while PSL-2s and PSL-5s are the focus of this work.

3.1. Datasets

This work uses the largest publicly available audio tagging
dataset, Audioset [11], as the main training and evaluation
corpus. Audioset is a multi-label dataset, where a single audio
clip can have up to 14 distinct labels. Notably, the label distri-
bution of Audioset is extremely imbalanced, where the least
prevalent label “Toothbrush” has 67 training samples, while
the most common label “Music” has around a million sam-
ples. Due to partial unavailability and difficulties acquiring
Audioset, we provide in-depth information about our down-
loaded dataset in Table 1. We further experiment with a subset
of the full training set named Aud-300h, which has been gen-
erated by sampling at most 200 audio clips for each label from
the unbalanced training set and added to the balanced training
set.

Dataset Purpose # Clips Duration (h)

Balanced
Train

21,155 58
Aud-300h 109,295 300
Full 1,904,746 5244
Eval Evaluation 18,229 50

Table 1. Dataset used in this work. The Full and Aud-300h
datasets are supersets of the balanced training-set.

3.2. Training setup

Log Mel-spectrogram (LMS) features are chosen as the de-
fault front-end feature for the task. Each 64-filter LMS is
extracted from a 32 ms window with a stride of 10 ms. If
samples in a batch have an unequal duration, we apply batch-
wise zero padding to the longest sample within a batch of size
32. Adam optimization [12] is utilized with a starting learn-
ing rate of 1e-4. For all experiments, every 10,000 batches
(≈ 1

6 epoch), we validate the model on the balanced subset
with mean-average precision (mAP) as our primary metric,
identical to other works [2, 3]. Additionally, we provide the
d-prime d′ score, which represents our model’s capability to
detect the presence of an event. The top-4 checkpoints achiev-
ing the highest mean average Precision score on the balanced
dataset are weight-averaged to obtain the final model used for
evaluation. Pytorch [13] was used for neural network imple-
mentation.2

3.3. Model setup

This paper uses MobilenetV2 [14] as the MA and PSL student
model, due to its small size (3M Parameters), quick training
time, and strong performance on Audioset [2]. Training dif-
ferences between MA and the PSL student model are pro-
vided.

Machine annotator The MA uses a pseudo-balanced
sampling strategy [2], raw-wave (Gain, Polarityinversion,
TimeShift), and SpecAug [15] augmentations as well as
Mixup [16] as described in [17]. Further, MA training uses
a polynomial decay strategy over the course of the training
with a duration of 30 epochs. The MA model is trained on
the full training set and achieves an mAP of 40.53.

Student model The student model is trained on the rela-
beled dataset provided by the MA without data augmentation.
Different from MA training, the student randomly samples
the dataset, since hard labels are unavailable. Student train-
ing is done for at most 300 epochs, with an early stop of 15
epochs. Since evaluation data samples in Audioset are at most
10s long, we split each sample into 2/5 s chunks (PSL-2/5s)
and average the scores obtained from the student model over
an audio clip.

2The source code is available online: www.github.com/
RicherMans/PSL

www.github.com/RicherMans/PSL
www.github.com/RicherMans/PSL


4. RESULTS

4.1. The effect of PSL

Method Label mAP d′

Baseline (Weak) y10
weak 17.69 1.994

PSL-10s (Proposed) ŷ10
PSL 31.13 2.454

PSL-5s (Proposed) ŷ5
PSL 34.11 2.549

PSL-2s (Proposed) ŷ2
PSL 35.48 2.588

CNN14 [2]

y10
weak

27.80 1.850
EfficientNet-B0 [3] 33.50 -
EfficientNet-B2 [3] 34.06 -
ResNet-50 [3] 31.80 -
AST [4] 34.70 -

Table 2. PSL training with varying resolutions on the bal-
anced subset of Audioset. Results shown are on the public
Audioset evaluation set. The first row represents our baseline
model trained with the original weak labels (y10

weak).

We study the effects of PSL on the balanced subset and in-
troduce our results in regards to a varying label-resolution in
Table 2. Our baseline MBv2 approach trained on the balanced
subset achieves an mAP of 17.69, which can be improved to
up to 35.48 when using PSL. Notably, PSL performs favor-
ably against other approaches in the literature using external
training data [4, 3].

If we compare PSL to the naı̈ve weak relabeling method
(PSL-10s), we observe an increase in terms of mAP from
31.13 to 35.48. This improvement might stem from an in-
crease in available data samples since PSL-2s has in fact 5
times more training samples than PSL-10s.

Recall that the MA achieved an mAP 40.53 using the full
(5200 h) training dataset, while the PSL trained model can
obtain an mAP of 35.48 (87% of the performance) using only
58 h (1%) of training data.

4.2. Comparing PSL to Teacher Student training

PSL can be viewed as a special case of knowledge distilla-
tion [18]:

L(x,y) = αLBCE(x, ŷ) + (1− α)LBCE(x,y),

where ŷ is a pseudo soft label predicted from a teacher model
(MA) and α = 1. Thus, we ask if including the original weak
labels into the framework benefits performance. We compare
the previous results (Table 2) to teacher-student training with
α = {0, 0.5}.

The results in Table 3 indicate that α = 0 enhances per-
formance on the balanced dataset against the naı̈ve 10 s ap-
proach, which likely stems from an increase in training data
sample size. However, results with α = 0.5 indicate that the
increased sample size is not necessarily a major factor, since

Label α mAP d′

y10
weak 0

17.69 1.994
19.76 2.072
20.21 2.030

y10
weak + ŷ10

PSL
0.5

27.12 2.190
y5

weak + ŷ5
PSL 28.24 2.273

y2
weak + ŷ2

PSL 28.13 2.203

Table 3. Teacher-student training with varying degrees of loss
contribution (α). Experiments are trained on the balanced
dataset and tested on the public evaluation dataset. Best re-
sults are highlighted in bold.
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Fig. 2. Number of label per clip distribution. Labels for PSL
training with 5 s and 2 s chunks and naı̈ve relabeling (10 s)
are compared with the original (weak) labels on the balanced
subset. For visualization, hard labels are obtained by thresh-
olding the machine annotated predictions with a value of 0.5.
Best viewed in color.

performance between PSL-10s and PSL-2/5s only marginally
improves from 27.12 to 28.24. Overall, we observe that using
standard teacher-student training is inferior to the proposed
PSL, where the original labels are disregarded. Thus, we con-
clude that the machine annotated labels are superior to the
original weak labels.

4.3. Analysis

For visualization and analysis purposes, we threshold the ma-
chine annotated labels with a value of 0.5 to obtain hard la-
bels. The number of labels per clip distribution is displayed
in Figure 2. The naı̈ve PSL-10s approach mainly predicts a
single label for each clip, while PSL-2s can effectively predict
up to 9. The amount of high-label per clip samples (> 4) in-
creases for PSL-2s compared to the original labels. PSL-10s
predicts no labels for 15% of the training data, due to a high
uncertainty, while PSL-2s fails for 3%. This indicates that
with a stronger temporally supervision, the MA also gains a
higher certainty regarding the presence of a sound event.

Further, we analyze whether the predicted labels differ or
supplement the original weak labels. The label-coverage be-
tween the predicted and original weak labels is shown in Fig-
ure 3. A label coverage of 1 represents that all original labels
overlap with the estimated ones, while 0 represents no over-
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Fig. 3. Labelcoverage of the machine annotated labels against
the original weak labels. Best viewed in color.

lap. The results indicate that only a fraction (≈ 17 - 25 %)
of the predicted labels are entirely different from the original
weak labels. We conclude that most additional labels are sup-
plementary to the original ones and thus partially mitigate the
missing label problem.

4.4. Training on large-scale datasets

We further explore whether PSL also enhances performance
when used on the larger Aud-300h and full datasets.

Method Training set Label mAP d′

Baseline (MA) Full y10
Weak 40.53 2.695

PSL-10s
Aud-300h

ŷ10
PSL 37.97 2.632

PSL-5s ŷ5
PSL 38.91 2.670

PSL-2s ŷ2
PSL 39.65 2.704

PSL-10s
Full

ŷ10
PSL 38.96 2.710

PSL-5s ŷ5
PSL 39.86 2.706

PSL-2s ŷ2
PSL 40.29 2.720

Table 4. Large dataset PSL training. Performance is evalu-
ated on the public evaluation dataset. Best results are high-
lighted in bold.

The results are displayed in Table 4. Compared to pre-
vious experiments in Table 2, we notice that performance
improvements are less significant. Specifically, when com-
paring Aud-300h and full dataset results, we observe only
marginal performance gains when using significantly more
data (300 h vs. 5200 h). This behavior is likely explained
by the label-imbalance in the full training set. We provide
a possible reason why performance on the full training set
failed to improve, while ReLabel [10] improved performance
on ImageNet. ReLabel’s MA is pre-trained on a much larger
dataset (JFT-300M) compared to their target dataset (Ima-
geNet), which is analogous to our experiments in Table 2.
Thus, we believe that PSL should lead to performance gains
on the full Audioset, if a publicly available AT dataset larger
than Audioset would exist.

4.5. Transfer Learning

Even though Section 4.4 indicates that PSL cannot improve
performance on Audioset via self-training, we suspect that in-
herent label-noise in the evaluation dataset is the main reason,
as it has been previously observed in [3]. We, therefore, ex-
periment on more carefully annotated weakly supervised AT
datasets, such that label-noise is to some extend mitigated.
The Freesound Kaggle 2018, 2019 [19, 20] and FSD50k [21]
datasets are chosen for this experiment. Here, we use two pre-
trained models, namely MA and PSL-2s trained on the full
dataset (see Table 4) and only train the final classifier layer,
while freezing all other parameters. Note that we segment the
training samples 10 s long for MA and 2 s for PSL-2s, match-
ing their respective training label resolution. Thus, MA is
trained with y10

weak and PSL-2s trained with y2
weak. Evaluation

is done by feeding an entire audio clip of arbitrary length into
each respective model, similar to Section 3.3.

Dataset Metric MA PSL-2s Imp.

FSD50k mAP 44.41 54.23 +9.82
FSD2018 mAP@3 87.31 89.21 +1.90
FSD2019-Curated lwlwrap 68.84 71.86 +3.02
FSD2019-Noisy lwlwrap 53.57 54.49 +0.92

Table 5. Transfer Learning results on the FSD datasets, where
only a linear classifier is trained. Both models were pretrained
on the full Audioset training set. The absolute improvement
(Imp.) is shown.

PSL consistently outperforms the MA baseline in regards
to all downstream datasets, as it can be seen in Table 5.
The largest performance gains are observed on the FSD50k
and FSD2019-Curated datasets, since those contain the least
amount of verified label-noise [21]. We conclude that due to
the temporally stronger supervision, PSL outperforms con-
ventional weak labeled training.

5. CONCLUSION

This work proposed PSL, a simple framework that refines
weakly supervised labels to provide stronger supervision. Re-
sults on Audioset show that performance can be increased by
providing cleaner supervision to a model trained for audio
tagging. PSL achieves an mAP score of 35.48 on the balanced
training set outperforming weakly labeled approaches. Our
analysis reveals that PSL is capable of mitigating label noise
and missing labels. Lastly, we show that transfer learning also
benefits from PSL, where we obtain a consistent performance
improvement on four downstream datasets.
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