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ABSTRACT
The spatial covariance matrix has been considered to be signifi-
cant for beamformers. Standing upon the intersection of traditional
beamformers and deep neural networks, we propose a causal neural
beamformer paradigm called Embedding and Beamforming, and two
core modules are designed accordingly, namely EM and BM. For
EM, instead of estimating spatial covariance matrix explicitly, the 3-
D embedding tensor is learned with the network, where both spectral
and spatial discriminative information can be represented. For BM,
a network is directly leveraged to derive the beamforming weights
so as to implement filter-and-sum operation. To further improve the
speech quality, a post-processing module is introduced to further
suppress the residual noise. Based on the DNS-Challenge dataset,
we conduct the experiments for multichannel speech enhancement
and the results show that the proposed system outperforms previous
advanced baselines by a large margin in multiple evaluation metrics.

Index Terms— Multichannel speech enhancement, neural
beamformer, embedding, causal, post-processing

1. INTRODUCTION
Speech enhancement (SE) attempts to extract the target speech
from the mixture signals. Due to the utilization of spatial informa-
tion to distinguish between target and interference, a plethora of
beamforming-based multichannel speech enhancement algorithms
have been widely proposed in a diverse set of applications, ranging
from audio-video conferencing to human-machine interaction [1, 2].

With the renaissance of deep neural networks (DNNs), neural
beamformers have propitiated wide interest due to their promising
performance in speech restoration and automatic speech recognition
(ASR) systems [3–5]. A typical strategy is to combine DNNs with
traditional beamforming techniques. Specifically, a single-channel
SE network is first adopted to parallelly estimate time-frequency (T-
F) masks w.r.t. speech and noise for each channel. The spatial co-
variance matrices are then calculated to obtain the optimal weights
for beamformers based on statistical optimization criteria [3, 6, 7],
like minimum variance distortionless response (MVDR) beamform-
ers and multichannel wiener filter (MWF) beamformers. However,
as the second stage is purely based on statistical theory and is usu-
ally irrelevant to the mask estimation, the pre-estimation error may
heavily hamper the subsequent beamforming results. More recently,
regression-based approaches began to thrive. Instead of obtaining
the beamformers’ weights, the spatial information is represented ei-
ther manually or implicitly, which serves as the auxiliary aspect of
spectral feature to facilitate the speech recovery in either the time
domain [8, 9] or T-F domain [10, 11]. The overall network topol-
ogy is akin to the single-channel case. Nonetheless, it is still far
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from affirmative how to combine the spatial and spectral features ef-
ficiently [9]. Moreover, the potential of spatial filtering is not fully
exploited, which limits the overall enhancement performance in real
acoustic scenarios.

Recently, another research line follows the guidance of estimat-
ing the beamforming weights with DNNs. As an early trial, Xiao et
al. [12] proposed to use GCC features to estimate the weights with
DNNs. In [13], Luo et al. proposed the FasNet to implement the
filter-and-sum operation in the time domain. Nonetheless, it lacks
adequate robustness and superiority compared with advanced T-
F domain based works [11]. More recently, an all-deep-learning
beamforming paradigm called ADL-MVDR was proposed, where
the mask estimation, spatial covariance calculation, and framewise
beamforming are integrated into a whole network and can be trained
end-to-end [14]. Despite the impressive performance in speech qual-
ity and ASR accuracy, as only the supervision w.r.t. target speech
is provided, it remains agnostic whether the internal signal-theory
based operations follow the expected physical definitions.

At this point, we would like to answer a question, i.e., how to
guarantee a neural system that can generate frame-level weights
for beamforming? We argue that it should meet two requirements.
First, it should incorporate abundant spatial information to distin-
guish the sources from different directions. Besides, as the filters
need to be updated at each frame, it should learn the T-F cue to as-
sist the separation between speech and interference especially when
the spatial cue is absent and blurred. To this end, we propose a gen-
eralized framework with the causal setting called Embedding and
Beamforming Network (EaBNet) for all-neural beamforming. Two
core modules are designed, namely Embedding Module (EM) and
Beamforming Module (BM). In the first module, the network aims
to extract the feature from the spectral and spatial perspectives and
obtain the 3-D embedding tensor that can latently distinguish be-
tween speech and noise components in both senses. In the second
module, rather than obtain the filter weights following the statisti-
cally optimal beamformer theory, we adopt a network to accomplish
the process. It has been illustrated that DNNs can better learn the
optimal filter weights than following the traditional beamformer for-
mulas [15]. Note that in contrast to [15] that the second-order spa-
tial statistics need to be explicitly calculated, our approach chooses
to directly obtain the temporal-spatial embedding so that it can po-
tentially learn higher-order spatial statistics with data-driven. With
the experiments on DNS-Challenge corpus, our system outperforms
previous state-of-the-art (SOTA) baselines by a large margin and also
surpasses the MVDR beamformer with oracle masks.

The rest of the paper is organized as follows. In Section 2, we
formulate the physical model. In Section 3, the proposed system is
introduced in detail. Section 4 gives the experimental setup, and the
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experimental results and analysis are provided in Section 5. Some
conclusions are drawn in Section 6.

2. PHYSICAL MODEL
Let us assume xp(t), with p = 0, · · · , P − 1, denotes the time-
domain noisy and reverberant speech signal at the pth microphone.
The physical model in the short-time Fourier transform (STFT) do-
main can be given by:

Xf,t = Sf,t +Nf,t = cfSf,t + rfNf,t, (1)
where {Xf,t,Sf,t,Nf,t} ∈ CP×1 respectively denote the reverber-
ant mixture, target speech and noise of P channels with frequency
index of f ∈ {1, · · · , F} and time index of t ∈ {1, · · · , T}. With-
out loss of generality, the first channel is selected as the reference
channel by default. {cf , rf} ∈ CP×1 denote the relative trans-
fer function (RTF) of the speech and that of noise, respectively.
{Sf,t, Nf,t} ∈ C are the complex values of target speech and that of
noise in the reference channel. Note that although we foucs on noise
reduction in this study, it also works to directional speaker interfer-
ence case, which is left as the future work.

Different from previous beamformers operated at either utterance-
[3] or chunk-level [16], we aims to estimate the framewise filter
weights, which enable the real-time processing at run-time. There-
fore, the beamforming output can be formulated as:

S̃f,t =

P∑
p=0

(
Mp
f,t

)∗
Xp
f,t, (2)

where Mp
f,t ∈ C denotes the beamforming weight of the pth mi-

crophone. ∗ stands for the conjugate operator. Note that only the
noise suppression is considered and dereverberation is not addressed
in this paper.

3. PROPOSED SYSTEM
3.1. Forward Stream
In this study, the target speaker is assumed to be static within each
utterance, i.e., the direction of arrivals (DOAs) of the target and noise
remains unchanged. However, due to the highly dynamic property
of speech and noise distribution, it is quite difficult to accurately
separate them with spatial-only cues. To this end, we propose an
embedding-and-beamforming paradigm to learn the beamforming
weights from both spatial and spectral perspectives. The overall di-
agram of the proposed framework is shown in Fig. 1(a). It consists
of three parts, namely the embedding module (EM), beamforming
module (BM), and the post-processing module (PostNet). For EM, it
aims to adaptively aggregate the information across the T-F spectrum
and different channels and obtain the 3-D tensor where both spatial
and spectral discriminative information are represented. For BM, it
is employed to replace the traditional beamforming step and directly
infer the filter weights and apply them to each channel. The filtered
spectra are then summed together to obtain the expected speech. Af-
ter the beamforming process, it may still contain the residual noise.
Therefore, the PostNet is adopted to further suppress these residual
noise components and improve the speech quality. In a nutshell, the
whole procedure can be formulated as:

Ẽ = EMet(Cat(X0, · · · ,XP−1)), (3)

M̃ = BFNet(Ẽ), (4)

S̃(1) =

P∑
p=0

(
M̃p
)H

X̃p, (5)

S̃(2) = PostNet(Cat(S̃(1),X0)), (6)

where {EMet,BFNet, PostNet} denote the network topology of
three modules, respectively. Cat refers to the concatenation opera-
tion along the channel axis. Ẽ ∈ CF×T×C and M̃ ∈ CF×T×P are

respectively the estimated 3-D embedding and beamforming tensors
and C is the embedding channel dimension. Superscripts (1) and
(2) denote the output of the beamformer and PostNet.
3.2. Embedding Module
Motivated by our preliminary works [17, 18], the convolutional
“Encoder-TCN-Decoder” topology is employed in the EM. The
encoder aims to gradually extract features with multiple downsam-
pling operations. The decoder has the mirror structure except that all
the convolution layers are replaced by the deconvolution (De) ver-
sions and recover to the original resolution. Temporal convolution
networks (TCNs) serve as the bottleneck, where multiple TCMs are
stacked for long-term sequence modeling and we adopt the squeezed
version herein to decrease the parameter burden [17], i.e., S-TCM,
as shown in Fig. 1(c).

The real and imaginary (RI) components from P microphones
are concatenated along the channel dimension as the network input,
i.e., X ∈ CF×T×2P . To better capture the spatial-spectral corre-
lation, the U2-Encoder and U2-Decoder are employed, which con-
sists of multiple recalibration encoder/decoder layers (RELs/RDLs).
The details are shown in Fig. 1(b)(d). Take ith REL/RDL as an ex-
ample, it mainly consists of a 2D-(De)GLU [19], instance normal-
ization (IN), PReLU [20], and a UNet-block with the residual con-
nection [21]. The input Ii is first encoded by the (de)convolution
operation. Afterward, the UNet-block receives the encoded feature
map Ki (Ii) as the input and then further recalibrates the informa-
tion distribution with a light-weight sub-UNet. For one thing, with
the embedded UNet, the spectral information from multiple scales
can be well grasped. For another, after consecutive downsamplings,
the spatial information may get alised and the sub-UNet can effec-
tively preserve the spatial information. The process can be given by:

Ki (Ii) = GLU (Ii) , (7)
Oi = UNet-block (Ki(Ii)) +Ki(Ii), (8)

3.3. Beamforming Module
Having obtained the estimated 3D-embedding tensor Ẽ, the BM is
leveraged to derive the framewise beamforming weights. Different
from traditional beamformers, we leverage the mapping capability
of networks to directly estimate the beamforming weights, which
can avoid explicitly computing the spatial covariance matrix and its
inversion, and thus to improve the system stability. Two types of
modules are investigated as the choice herein, namely convolutional-
based beamformer (C-BF) and recurrent-based beamformer (R-BF),
as shown in Fig. 1(a). For the first type, a pointwise 2D-Conv is
adopted to transform the channel dimension from C to 2P , which
obtains the real and imaginary components of P -channel filters. For
the second type, the layer norm (LN) [22] is first adopted to nor-
malize the embedding tensor, followed by two LSTM layers to sim-
ulate the beamforming process updated frame by frame, as shown
in Fig. 1(e). Two fully-connected (FC) layers with ReLU nonlin-
earity activation function are used to estimate the coefficients. Note
that in the previous literature [3], the frequency dimension serves as
the feature input of the LSTM. However, in this paper, the LSTM
is shared by different frequency subbands, which is similar to tradi-
tional beamformers that apply to each frequency subband indepen-
dently. The above process can be expressed as:

M̃ = Conv
(
Ẽ
)
, for C-BF, (9)

M̃ = FC
(
LSTM

(
LayerNorm

(
Ẽ
)))

, for R-BF, (10)

Following filter-and-sum operation, the complex-valued filters
are then applied to each channel and the filtered spectra are summed
together to obtain the expected speech.
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Fig. 1. The diagram of the proposed framwork EaBNet. It mainly consists of two modules, namely EM and BM. Besides, the post-processing
module is also introduced to further suppress the residual noise component. Different modules are remarked with different colors.

3.4. Post-processing Module
After the beamforming stage, due to the performance limitation,
some residual noise components may exist, which hinders the speech
quality. To this end, a post-processing module is proposed to further
suppress the remaining noise. Theoretically, any single-channel SE
system can be selected. In this paper, we choose our newly proposed
GaGNet as the PostNet due to its promising performance in noise re-
duction with low computational complexity. Due to the space limit,
we may refer the readers to [23] for more details.

4. EXPEREIMENTAL SETUP
4.1. Dataset Preparation
The experiments are conducted on the DNS-Challenge dataset.1 For
clean speech, the neutral clean speech set is selected, which consists
of around 562 hours by 11,350 speakers. We randomly split it into
two non-overlap parts, namely for model training and evaluation.
The average duration of the utterance is chunked into around 6
seconds. For the noise set, similar to [17], around 20,000 types of
noises are randomly selected for training, whose duration is around
55 hours. Multichannel RIRs are generated with image method [24]
based on a uniform 9-channel linear array with the spacing of
4cm. The room size is ranging from 3m-3m-2.5m to 10m-10m-3m
(length-width-height). The reverberation time (RT60) ranges from
0.05s to 0.7s. Note that the DOA difference between target speech
and interference noise is at least 5◦ during the data generation and
the distance from the source to the array is randomly selected from
{0.5m, 1m, 2m, 3m}. The relative signal-to-noise ratio (SNR)
between target speech and interference noise ranges [−6dB, 6dB]
with 2dB interval. As a result, we create around 80,000, and 4000
mix-clean pairs for training and validation, respectively.

For model evaluation, four challenging noises are selected,
namely babble, factory1, white noises from NOISEX92 [25] and
cafe noise from CHiME3 noise set [26]. Four SNRs are set, namely
{−5dB,−2dB, 0dB, 2dB}, with 600 mix-clean pairs in each case.
4.2. Baselines
Six approaches are selected as the baselines, namely CTSNet [17],
GaGNet [23], FasNet+TAC [27], MC-ConvTasNet [8], MIMO-
UNet [28], and oracle MB-MVDR. CTSNet and GaGNet are two
SE systems that achieved state-of-the-art (SOTA) performance in
the monaural scenario. FasNet+TAC and MC-ConvTasNet are two
time-domain based methods that exploit multiple raw-waveforms to
extract the target speech. MIMO-UNet ranked first in the Far-field
Multi-Channel Speech Enhancement Challenge for Video Con-
ferencing. For a fair comparison, all the non-causal settings are
replaced by the causal versions. Besides, the scale-invariant SNR
(SI-SNR) loss in FasNet+TAC and MC-ConvTasNet is replaced by

1github.com/microsoft/DNS-Challenge/tree/master/datasets

classical SNR loss to mitigate the free change of the magnitude
level [29]. For MB-MVDR, we utilize the oracle ideal ratio mask
(IRM) to calculate the spatial covariance matrix and then derive
MVDR weights for beamforming.2

4.3. Implementation Details

4.3.1. Model Details
In the EM, the kernel size of 2D-(De)GLU is set as (2, 3) with stride
being (1, 2) in the time and frequency axes. For each UNet-block,
the kernel and stride size are (1, 3) and (1, 2), respectively. Let us
define the number of (de)encoding layers within the UNet-block as
Q, then Q = {4, 3, 2, 1, 0} for U2-Encoder and Q = {1, 2, 3, 4, 0}
for U2-Decoder, respectively, where 0 means that no UNet-block is
used. The number of channels in both encoder and decoder remains
64 by default. For bottleneck sequence modeling, 3 S-TCNs are
stacked, each of which consists of 6 S-TCMs with kernel size and
dilation rate being 5 and {1, 2, 4, 8, 16, 32}. When R-BF is switched
for beamforming, two uni-directional LSTMs are utilized with 64
hidden nodes. For C-BF, the kernel size is set to (1, 1).

4.3.2. Training Details
All the utterances are sampled at 16kHz. The 20ms Hanning window
is utilized with 50% overlap between adjacent frames. 320-point
FFT is utilized, leading to 161-D features, i.e., F=161. Most re-
cently, the efficacy of power-compression is investigated for single-
channel speech enhancement [23] and dereverberation tasks [30].
Here, we adopt it for both the input and target of each channel, i.e.,
|Xp|0.5ejθXp , |Sp|0.5ejθSp , p ∈ {1 · · · , P}. The rationale is that
we only compress the magnitude and leave the phase unchanged.
Therefore, spatial information can still be well preserved. MMSE
with magnitude constraint is adopted as the loss function for train-
ing [17, 23]. All the models are trained with Adam optimizer [31]
and the learning rate is initialized at 5e-4 and will be halved if the
loss does not decrease for consecutive two epochs. The batch size is
8 and the number of epochs is 60.

5. RESULTS AND ANALYSIS

5.1. Ablation Study
We conduct the ablation study on EaBNet in terms of whether to use
UNet-block, whether to output multiple filter weights (MO), the type
of BF, and whether the magnitude compression is adopted, as shown
in Table 1. Perceptual evaluation of speech quality (PESQ) [32], ex-
tended short-time objective intelligibility (ESTOI) [33], and signal-
distortion ratio (SDR) [34] are adopted as evaluation metrics. Sev-
eral observations can be made. 1) Going from ID-1 to ID-5, constant

2https://pypi.org/project/beamformers



Table 1. Ablation study on the proposed EaBNet. The values are specified with PESQ/ESTOI(%)/SDR(dB) format. BOLD indicates the best
score in each case. “Avg.” denotes the average value among different SNRs in the test set.

System ID UNet- MO BF Compression Para. -5dB -2dB 0dB 2dB Avg.block Type (M)

EaBNet

1 % ! R-BF ! 2.19 3.16/78.95/13.83 3.34/82.36/15.45 3.49/86.18/16.90 3.59/87.63/17.55 3.40/83.78/15.93
2 ! % % ! 2.77 3.10/77.22/12.26 3.28/80.80/13.74 3.44/84.65/15.09 3.54/86.28/15.94 3.34/82.24/14.26
3 ! ! C-BF ! 2.77 3.20/79.67/13.40 3.38/82.97/15.05 3.54/86.68/16.50 3.63/87.89/17.12 3.44/84.30/15.52
4 ! ! R-BF % 2.84 2.93/76.66/14.73 3.12/80.88/16.53 3.29/84.83/18.13 3.39/86.21/18.61 3.18/82.15/17.00
5 ! ! R-BF ! 2.84 3.30/81.75/14.68 3.47/84.66/16.16 3.61/88.04/17.64 3.70/89.19/18.38 3.52/85.91/16.72

Table 2. Results comparison with advanced baselines. “Cau.” denotes whether the system is causal implementation.

Systems Domain
Para. MACs

RTF Cau. -5dB -2dB 0dB 2dB Avg.
(M) (G/s)

Noisy - - - - - 1.45/29.62/-4.89 1.62/37.71/-1.93 1.74/41.85/0.05 1.87/49.42/2.05 1.67/39.65/-1.18
CTSNet T-F 4.35 5.57 0.37 ! 1.87/40.35/2.32 2.14/50.87/5.63 2.34/58.27/7.64 2.50/63.64/9.03 2.21/53.28/6.15
GaGNet T-F 5.94 1.63 0.19 ! 1.91/42.02/3.01 2.22/52.50/5.99 2.42/59.99/7.90 2.58/65.09/9.19 2.28/54.90/6.52

FasNet+TAC T 3.82 7.56 0.67 ! 2.40/63.39/11.43 2.62/68.99/13.44 2.77/73.89/14.88 2.88/76.50/15.54 2.67/70.69/13.82
MC-ConvTasnet T 6.56 5.28 0.43 ! 2.21/59.57/9.90 2.44/65.20/11.61 2.72/72.16/13.46 2.82/74.52/14.02 2.55/67.86/12.25

MIMO-UNet T-F 1.97 4.09 0.16 ! 2.39/60.93/8.96 2.61/66.99/11.17 2.75/71.29/12.49 2.85/73.71/13.20 2.65/68.23/11.45
MB-MVDR(oracle) T-F - - - % 2.88/78.59/12.06 3.04/82.45/13.90 3.18/85.82/15.17 3.29/87.43/15.90 3.10/83.57/14.26

EaBNet∗ T-F 2.91 8.46 0.80 ! 3.24/80.16/13.60 3.41/83.49/15.15 3.56/86.91/16.51 3.65/88.11/17.15 3.46/84.67/15.60
EaBNet T-F 2.84 7.38 0.59 ! 3.30/81.75/14.68 3.47/84.66/16.16 3.61/88.04/17.64 3.70/89.19/18.38 3.52/85.91/16.72

EaBNet+PostNet T-F 8.78 9.04 0.83 ! 3.44/83.33/15.13 3.58/85.86/16.58 3.71/89.04/18.05 3.79/90.03/18.72 3.63/87.06/17.12

improvements are made for all cases, which show that the introduc-
tion of the UNet-block can well preserve spectral and spatial infor-
mation and lead to better beamforming results. 2) When we directly
estimate the complex-valued mask for the reference channel without
explicit beamforming process, as shown from ID-5 to ID-2, consis-
tent performance degradations in three metrics are observed, which
emphasize the significance of the beamforming operation in multi-
channel speech enhancement systems. 3) We compare the perfor-
mance between different BF types, as shown in ID-3 and ID-5, one
can find that R-BF yields relatively better performance over C-BF.
This is because, in R-BF, the LSTM is leveraged to update the state
frame by frame, which leads to better beamforming weights estima-
tion when the spatial information is not accurate enough for sepa-
ration. 4) Compared with ID-4, when the magnitude compression
is employed, considerable improvements in PESQ and ESTOI are
achieved while mild degradation in SDR is observed. This is because
compression operation decreases the dynamic range of spectrum dis-
tribution and highlights the priority of low-energy regions [23, 30].
As the result, more residual noise can be suppressed and improve
the speech quality. Meanwhile, with the nonlinear compression op-
eration, the linear separability between different sources in the space
may be destroyed. Therefore, it may cause more target distortion,
which partly explains the degradation in the SDR.

5.2. Results Comparison with Advanced Baselines
The best configuration of EaBNet in Table 1 is chosen to compare
with other baselines, whose results are presented in Table 2. To
emphasize the effectiveness of the learned embedding in spectral-
spatial information representation, we also set the reference dubbed
EaBNet∗, where we output the complex-valued masks w.r.t. speech
and noise at the end of EB and then the spatial covariance matrices
are calculated and concatenated as the input of R-BF [15]. For a fair
comparison, the hidden nodes of the LSTM remain the same.

From the table, several observations can be obtained. First, com-
pared with the single-channel case, when more channels are avail-
able, considerable improvements for three metrics can be achieved
for all the multichannel based models. This indicates that the uti-
lization of spatial information can facilitate the separation of differ-
ent sources. Second, the proposed system outperforms the previ-
ous baselines by a large margin. For example, going from MIMO-
UNet to EaBNet, average 0.87, 17.68%, and 5.67dB improvements
are achieved in terms of PESQ, ESTOI, and SDR, respectively. It

fully demonstrates the superiority of our system in speech recov-
ery. Besides, we observe that the proposed system also surpasses the
MB-MVDR with oracle IRM consistently, which reveals the feasi-
bility of end-to-end framewise beamformers with DNNs over previ-
ous tandem-style schemes [3, 6, 7]. Third, it is interesting to find that
compared with EaBNet∗, when the embedding tensor is abstractly
represented rather than follow the traditional signal-theory to calcu-
late the spatial covariance matrices w.r.t. speech and noise, even bet-
ter performance can be made, which inspires us to rethink the role of
signal-theory in end-to-end neural beamformers. We can explain the
phenomenon from several perspectives. For one thing, the spatial co-
variance matrix is usually sparse and is often redundant and not nec-
essary to represent the spectral-temporal information. Meanwhile, it
also tends to be less robust toward the real scenarios than the com-
pact embedding. For another, compared with explicit second-order
covariance matrix calculation, the implicit embedding is learned di-
rectly from the training data, it can thus potentially learn higher-
order spatial statistics. Forth, when the PostNet is adopted, further
metric improvements can be achieved, which illustrates the necessity
of post-processing in noise suppression and speech recovery.

We also provide the model size, the number of multiply-
accumulate operations (MACs) per second, and real-time factor
(RTF), as shown in Table 2. RTF is evaluated on an Intel Core(TM)
i5-4300 CPU clocked at 1.90GHz. One can find that EaBNet has an
overall light-weight model size (2.84M) than other baselines and the
RTF is 0.59, which meets the real-time processing criterion. Despite
more parameters and higher RTF are induced when the PostNet is
added, we can decrease the overall burden by choosing more decent
post-processing algorithms with less computational complexity.

6. CONCLUSIONS
In this paper, we propose a generalized causal framework called
EaBNet, which enables the framewise neural beamforming for mul-
tichannel speech enhancement. Two modules are designed accord-
ingly, namely EM and BM. In the EM, we directly generate the 3-D
embedding tensor which contains both spectral-spatial discrimina-
tive information. In the BM, a network is directly utilized to out-
put the filter weights. A post-processing module is also introduced
to further suppress the residual noise and facilitate speech recovery.
The experiments show that the proposed system yields state-of-the-
art performance over previous baselines by a large margin.
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