
This research work is financially supported in part by Novatek, under grant
110HT945009, and in part by Ministry of Science and Technology,
Taiwan, under grant MOST 110-2218-E-002-034-MBK.

COMPRESSION-AWARE PROJECTION WITH GREEDY DIMENSION REDUCTION FOR

CONVOLUTIONAL NEURAL NETWORK ACTIVATIONS

Yu-Shan Tai, Chieh-Fang Teng, Cheng-Yang Chang, and An­Yeu (Andy) Wu

Graduate Institute of Electrical Engineering, National Taiwan University, Taipei, Taiwan

{clover, jeff, kevin}@access.ee.ntu.edu.tw, andywu@ntu.edu.tw

ABSTRACT

Convolutional neural networks (CNNs) achieve remarkable
performance in a wide range of fields. However, intensive
memory access of activations introduces considerable energy
consumption, impeding deployment of CNNs on resource-
constrained edge devices. Existing works in activation
compression propose to transform feature maps for higher
compressibility, thus enabling dimension reduction.
Nevertheless, in the case of aggressive dimension reduction,
these methods lead to severe accuracy drop. To improve the
trade-off between classification accuracy and compression ratio,
we propose a compression-aware projection system, which
employs a learnable projection to compensate for the
reconstruction loss. In addition, a greedy selection metric is
introduced to optimize the layer-wise compression ratio
allocation by considering both accuracy and #bits reduction
simultaneously. Our test results show that the proposed
methods effectively reduce 2.91×~5.97× memory access with
negligible accuracy drop on MobileNetV2/ResNet18/VGG16.

Index Terms—Activation compression, transformation,

deep learning, convolutional neural network, dimension
reduction

1. INTRODUCTION

In recent years, CNNs have achieved amazing performance in
various applications, such as face recognition [1], image
classification [2], disease detection [3], and so on. Despite of the
superior performance, extensive computation requirements and
intermediate data communication between deep learning
accelerator (DLA) and off-chip memory hinder CNNs from
being embedded on edge devices. Therefore, model
compression techniques, e.g., pruning and quantization, have
been intensively researched and widely used.

As presented in [4][5], data movement of activations
consumes almost 70% of the total energy footprint.
Consequently, as another line of work orthogonal to model
compression, activation compression (AC) is receiving
increasing attention. To remove redundant elements without
losing essential information, prior works [6]-[10] have
successfully exploited the sparsity induced by the rectified linear
unit (ReLU) function, as shown in Fig. 1(a). Nevertheless, the
sparsity of activations is dynamic and is highly dependent on the
input data [6]. Without satisfactory sparsity, a lossless encoder
cannot guarantee to reach the expected compression ratio.

To enhance activation sparsity, transform-based AC
leverages discrete cosine transform (DCT) [7][11] or principal
component analysis (PCA) [12]-[14] before sending activations
to variable length coding (VLC), as shown in Fig. 1(b). After
transforming activations to another domain,

important/unimportant parts of activations become separable
and thus improve compressibility.

Although existing transform-based methods have been
proven to be effective for AC, there are still some challenges:
1) Sacrificed accuracy for dimension reduction: PCA or DCT-

based transformation matrix does not consider the following
compression. Therefore, further dimension reduction (DR)
results in severe performance degradation.

2) Threshold-based dimension reduction: Existing methods
determine the DR ratio of each layer according to the same
accumulated eigenvalue threshold [12][13]. However, they
neglect the layer-wise differences among eigenvalue
distributions and sizes of activations vary among different
CNN layers. Ignoring the information mentioned above
makes the compressing process sub-optimal.

To address the above issues, we propose a compression-
aware projection system with greedy dimension reduction (DR)
as shown in Fig. 1(c). Our main contributions are:
1) Learnable projection: We use a learnable projection to

compensate for the reconstruction loss induced by
compression. Our experiment results show that learnable
projection can improve the memory access of
MobileNetV2/ResNet18/VGG16 by 2.85×~5.06×.

2) Greedy dimension reduction (DR): We design a selection

metric specialized for greedy DR, which iteratively utilizes

DR to reduce the storage overhead of the layer with the

lowest metric in each round. Combining greedy DR with

our learnable projection leads to a better trade-off between

classification accuracy and compression ratio, further

improving the memory reduction rate to 2.91×~5.97×.

The rest of this paper is organized as follows. Section 2

briefly introduces the existing activation compression methods.

Section 3 illustrates the proposed compress-aware projection,

which comprises a learnable projection and greedy DR based on

the selection metric. The experiments and analyses are

illustrated in Section 4. Finally, Section 5 concludes our work.

Fig. 1. Overview of different activation compression (AC) methods: (a)
Lossless encoder AC; (b) Transform-based AC; (c) The proposed compression-

aware projection with greedy dimension reduction.

D
e

n
s
e

/C
o

n
v
o

lu
ti

o
n

a
l

L
a

y
e

r

O
ff

-C
h

ip
 D

R
A

M

B
a

tc
h

N
o

rm
a

li
z
a

ti
o

n
L

a
y

e
r

V
a

ri
a

b
le

 L
e

n
g

th
 C

o
d

in
g

 (
V

L
C

)

V
a

ri
a

b
le

 L
e

n
g

th
 D

e
c

o
d

in
g

 (
V

L
D

)

(c)

Learnable Projection

(b)

DCT/PCA Matrix

(a)
ReLU

Greedy DR

Inverse Projection

Inverse DCT/PCA

2. RELATED WORK

2.1. Lossless Encoder for Activation Compression

Activation, or feature map, is the intermediate output of each
layer. Since the ReLU function makes activations sparse, several
researchers exploited this characteristic to develop sparsity-
based lossless encoder, as shown in Fig. 1(a).

One of the most popularly used lossless encoders is run-
length encoding (RLE), which keeps the length of zero interval
instead of storing consecutive zeros. In [6], RLE is used to
compress both weight and activation. Another well-known
lossless encoder is zero value compression (ZVC) [10], which
utilizes a non-zero-mask to indicate the location of non-zero
values and is helpful to compress data with randomly distributed
sparsity [7]. Huffman encoding is also a widely known
compression method [8][9]. This encoding is based on the
frequency of elements and achieves a higher compression ratio
with biased data.

However, the sparsity of activations is dynamic, which
depends on model architecture and input data characteristics.
Thus, the above methods are highly sensitive to sparsity and may
perform poorly with dense activations.

2.2. Transform-based Activation Compression

To overcome the restriction of sparsity pattern and enhance
compression ratio, transform-based methods are introduced, as
shown in Fig. 1(b). Since activation is generated by mapping
relatively small-sized inputs to high dimensions, there is high
redundancy among channels [13]. Rather than sending
activation to sparsity-based encoder directly, transformed-based
methods adopt domain transformation first to separate
important/unimportant components. Therefore, the compression
ratio can be further improved by removing the latter.

In [7], the authors operated DCT to project activation to the
frequency domain. To further fold the transformation matrix into
convolution layer, [11] implemented 1D-DCT on the channel
domain rather than the spatial domain and utilized a mask to
facilitate channel reordering. However, the mask is hard to
design and greatly impacts performance.

Instead of using DCT as the transformation matrix, some
other works replaced it with PCA. In [12], the authors adopted a
pre-computed PCA matrix to transform activations. Let stand
for the activation, whose size is 𝑛 × 𝑑 × 𝑤 × ℎ and 𝑛, 𝑑, 𝑤, ℎ
represent the batch size, channel number, width, and height,
respectively. Since PCA operates on the channel domain,
would need to be reshaped to 𝑐 ∈ 𝑑 × (𝑛 × 𝑤 × ℎ) first. Then,
the corresponding transformation matrix 𝐔 can be obtained by
PCA:

𝐔, 𝚺 = 𝑃𝐶𝐴(𝑐), (1)

where 𝐔 stands for the orthogonal basis and 𝚺 =
{𝜎

2, 𝜎2
2, … , 𝜎𝑑

2 } are its corresponding eigenvalues. By
multiplying 𝑐 with 𝐔 , we can obtain the transformed
activations 𝐔:

 𝐔 = 𝐔 × 𝑐 , (2)

Afterward, 𝐔 would undergo quantization and variable length
coding (VLC) as presented in Fig. 1(b). Finally, the #bits of
needed to send to off-chip memory can be displayed by:

𝐵(𝐔) = #𝑏𝑖𝑡𝑠 (𝑉𝐿𝐶(𝑄(𝐔))). (3)

If needed to fetch, activations would be reconstructed by the
symmetric inverse process. Since the PCA matrix is data-
dependent, it is more likely to reach higher compressibility than
DCT, whose matrix is fixed and suitable for data with locality.
Moreover, the importance of each channel could be verified by
comparing its eigenvalue, where larger 𝜎 implies containing a
higher amount of information. Thus, threshold-based dimension
reduction utilizes this concept to keep minimum #channels until
cumulated eigenvalue reaches the defined percentage 𝑇, which
can be specified as:

𝑑
′ =

argmin
𝑘

∑ 𝜎𝑖
2𝑘

𝑖=

∑ 𝜎𝑖
2𝑑𝑙,

𝑖=

≥ 𝑇, 𝑙 ∈ {1,2, … 𝐿}, (4)

where 𝑑 and 𝑑
′ denote #channels of layer 𝑙 before and after

dimension reduction, and 𝐿 stands for the total number of layers.
By removing these unimportant channels, the corresponding
dimension of activations could be further reduced to a smaller
scale, which directly decreases memory access requirement.

Although PCA transformation can address the lack of
sparsity and locality, there still exists some room for
improvement. First, since the PCA matrix is obtained just by
analyzing input data distribution, DR and quantization are not
considered. This leads to dramatical accuracy loss after further
compression. Secondly, reducing the dimension of each layer as
Eq. (4) is not ideal. Since each layer owns different eigenvalue
distribution, the impact of DR also differs. On the other hand,
the sizes of feature maps have a significant influence on the
compression strength. Ignoring the difference among layers
would not only make the compression process inefficient but
also hurt accuracy.

3. PROPOSED LEARNABLE PROJECTION WITH

GREEDY BASED DIMENSION REDUCTION

3.1. Learnable Projection

To maintain accuracy with a high compression ratio, we propose
a compression-aware projection system to compensate for the
loss, which is shown in Fig. 1(c). The main idea of our method
is to make the transformation matrix trainable while keeping
other model weights frozen. The detail of the system is
illustrated at the bottom of Fig. 2, where ,

′ denote the
activations of the original model and that of the learnable

projection, 𝐏 and 𝐏
𝑖𝑛𝑣 are the learnable projection matrix and

inverse matrix of layer 𝑙. ∗ stands for convolution followed by
batch normalization (BN), and 𝑄 as well as 𝑄 represent
uniform quantization and its inverse operation, respectively.

The details of training steps are specified as follows. First,

we initialize 𝐏 and 𝐏
𝑖𝑛𝑣 with PCA transformation matrix and

its transpose matrix to make our training start at a good point.
Next, we train the two transform matrices with hint loss and
knowledge distillation (KD) loss, which can be written as:

ℒ = ℒℎ𝑖𝑛𝑡 + ℒ𝐾𝐷 , (5)

ℒℎ𝑖𝑛𝑡 = ∑‖ −
′‖2

𝐿

 =

, (6)

ℒ𝐾𝐷 = 𝐷𝐾𝐿(𝐨||𝐨′), (7)

where 𝐷𝐾𝐿(∙ || ∙) is the Kullback-Leibler divergence (KL-
divergence) and 𝐨 as well as 𝐨′ stand for the output vector of the
original model and that of the learnable projection model. We
calculate hint loss as specified in [14], which uses activations
after ReLU to take nonlinear function into consideration. As for
the KD loss, we analyzed cross-entropy loss and KL divergence
to measure the bias of output distribution and found the latter led
to better results. Therefore, instead of training with labeled data,
our proposed learnable projection only requires the activations
and soft output generated by the original model. Labeled data
are hard to access and sometimes involve privacy issues, so our
training strategy is feasible to real-world scenarios.

The PCA matrix for each layer is pre-computed offline, and
the transformation matrix can also be folded into the convolution
and BN operations [12]. Therefore, the only computational
overhead introduced by learnable projection is the inverse

process (i.e., 𝐏
𝑖𝑛𝑣). In Sec. 4, we would further elaborate on the

analysis of additional computation overhead.

3.2. Selection Metric for Greedy Dimension Reduction

Though threshold-based dimension reduction can remove

unimportant channels, this strategy leads to severe accuracy

drop under a high compression ratio. To tackle this issue, we

design a greedy selection metric to consider both accuracy drop

and memory reduction to achieve a better trade-off.
Our strategy is to greedily choose one layer for dimension

reduction at each step and iterate until the required #bits are less
than the memory constraint. To achieve our goal, we design a
selection metric to prioritize which layer for DR:

𝑆 = ∆𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦/∆𝑁 , (8)

where ∆𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 and ∆𝑁 denote the loss of accuracy and

reduced #bits after operating DR on layer 𝑙. Small 𝑆 implies

sacrificing minor accuracy and reducing huge memory

requirements. Take Fig. 3 as an example. There are 𝐿 projection

matrices {𝐏 ,𝑑1
′ , 𝐏2,𝑑2

′ , … , 𝐏𝐿,𝑑𝐿
′ } , and each 𝐏 ,𝑑𝑙

′ contains 𝑑
′

rows. By computing the selection metrics among 𝐿 layers, we

obtain 𝑆 = {𝑆 , 𝑆2, … , 𝑆𝐿}. If the minimum occurred at layer 2,

we would remove the last row of 𝐏2,𝑑2
′ . Afterward, 𝑑2

′ is updated

to 𝑑2
′ − 1 . We keep greedily selecting layers to reduce

dimension until required #bits meets the user-defined constraint.
Since evaluating the accuracy drop in each step is time-

consuming for large-scale tasks (e.g., ImageNet), a simple yet
effective alternative evaluation metric is significant. As
mentioned in [14], the product of the layer-wise cumulated
eigenvalue is highly related to final accuracy. Therefore, we
utilize the percentage of eigenvalue on layer 𝑙 to approximate
the accuracy drop induced by DR:

∆𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 ≈ 𝜎 ,𝑑𝑙
′/∑ 𝜎 ,𝑐

𝑑𝑙
′

𝑐= . (9)

As for ∆𝑁, we measure the difference of required #bits after DR

to quantify the gain of compression:

∆𝑁 = 𝐵 (𝐏 ,𝑑𝑙
′ ×

′) − 𝐵 (𝐏 ,𝑑𝑙
′ ×

′). (10)

Compared to equation (4), the proposed selection metric for
greedy DR reaches a better trade-off since it takes both accuracy
and compressibility into consideration. In Sec. 4, we would
compare the performance of our greedy-based method with
threshold-based work to evaluate its effectiveness and then
analyze the different distribution of DR between them.

4. SIMULATION RESULTS

In the following experiments, we implement our proposed
method on pre-trained MobileNetV2, ResNet18, and VGG16,
whose weights and activations are both quantized to 8 bits. The
dataset we use is ImageNet (ILSVRC 2012) [15]. We randomly
sample 50,000 out of 1,281,167 training data to fine-tune our
projection matrices, and use Huffman encoder as our VLC. For
each implementation, we set learning rate as 1e-3 and number of
epochs is 3, the batch sizes of MobileNetV2, ResNet18, and
VGG16 are set as 150, 250, 64, respectively. We use stochastic
gradient descent (SGD) as our optimizer. All the experiments are
operated with PyTorch1.9.0 and Python3.9.

4.1. Analysis of Compression between Different Methods

In this section, we evaluate the compression performance

among different methods as shown in Fig. 4. The performance

of Huffman coding and PCA [12], corresponding to Fig. 1(a)

and Fig. 1(b), are conducted as baseline for evaluation. In Fig.

4, the number marked at each point indicates DR under different

eigenvalue threshold 𝑇, which is set as [0.97, 0.98, 0.99, 0.995,

1]. Note that there is no need to set the eigenvalue threshold for

our greedy DR. Instead, we keep discarding rows until #bits

reaches a similar quantity as baseline for a fair comparison.

Fig. 2. The relation of the original model and learnable projection.

Fig. 3. Selection metric for greedy dimension reduction.

′

BN

′

𝐏 𝐏

BN

Teacher Network: Original Model

Student Network: Learnable Projection

Hint Loss Hint Loss

Projection

Projection

Projection

Projection

Calculation of

Selection Metric

Remove Last

Row of

Projection

From Fig. 4, we can observe only using Huffman coding
receives a low compression ratio. The reason is that Huffman
coding is lossless and sensitive to sparsity. On the other hand,
PCA enhances compressibility by decorrelation and DR, but
accuracy suffers from catastrophic drops as eigenvalue threshold
decreases.

By introducing the trainable mechanism, proposed learnable
projection (LP) with threshold-based DR can compensate the
compression loss effectively and thus preserve higher accuracy
than PCA. We reach 0.4%/0.4%/0.6% accuracy drop with
average 1.58/2.81/1.72 bits per value, which reduce memory
access of original MobileNetV2/ResNet18/VGG16 model by
5.06/2.85/4.65 times, respectively.

Moreover, after equipping learnable projection with greedy
DR as presented in Sec. 3.2, the performance can be further
improved. Since considering accuracy drop and bits reduction
simultaneously, we can reach a better trade-off than equation (4).
In summary, we reach negligible 0.6%/0.4%/0.6% accuracy
drop with average 1.34/2.75/1.44 bits per value, which reduce
memory access of original MobileNetV2/ResNet18/VGG16
model by 5.97/2.91/5.56 times, respectively.

4.2. Visualization of Dimension Reduction Policy

In this part, we would analyze the difference between proposed

greedy DR and threshold-based DR by visualizing the #channels

among different layers after DR. Due to the limited space, we

take ResNet18 with threshold set to 0.995 as an example. In Fig.

5, greedy DR tends to remain a greater #channels for deep layers

than threshold-based DR. Since the size of deep layers is smaller

than shallow layers, they are more likely to receive a large

selection metric. Specifically, the size of the first feature map is

112 × 112 while that of the last layer is 7 × 7. Consequently,

we can conclude that compressing shallow layers leads to higher

#bits reduction and makes our greedy DR more effective.

4.3. Analysis of Additional Computation Overhead

In Sec. 4.1, we demonstrate the effectiveness of activation

compression of our method. To further analyze the additional

computation overhead induced by the learnable projection and

inverse transformation matrix, we analyze our work under

different eigenvalue thresholds 𝑇. As shown in Table I, each

value represents the relative computation over the original

model, which can be specified as:

(𝐶𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 + 𝐶𝐿𝑒𝑎𝑟𝑛𝑎𝑏𝑙𝑒) + 𝐶𝐼𝑛𝑣𝑒𝑟𝑠𝑒

𝐶𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙
× 100% (11)

=
𝐶𝐹𝑜𝑙𝑑𝑒𝑑 + 𝐶𝐼𝑛𝑣𝑒𝑟𝑠𝑒

𝐶𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙
× 100%, (12)

where 𝐶𝑂𝑟𝑖𝑔𝑖𝑛𝑎 , 𝐶𝐿𝑒𝑎𝑟𝑛𝑎𝑏 𝑒 , 𝐶𝐼𝑛𝑣𝑒𝑟𝑠𝑒 , 𝐶𝐹𝑜 𝑑𝑒𝑑 stand for the

computation of original model, learnable projection, inverse

projection, and after folding learnable projection into

convolution. When the eigenvalue threshold is set to 1, it means

no dimension reduction and the overhead is purely induced by

inverse projection. However, as threshold decreases, dimension

reduction can reduce matrix size and make the computation of

our method even less than the original model.

5. CONCLUSION

In this paper, we propose a compression-aware projection

system. By training a learnable projection, the reconstruction

loss induced by compression could be compensated. Moreover,

we design a selection metric specialized for greedy DR, taking

both accuracy and compressibility into account. Experimental

results show that our method reduces 2.91×~5.97× memory

access with negligible accuracy drop on MobileNetV2

/ResNet18/VGG16.

Fig. 4. Comparison of AC methods under different models: (a) MobileNetV2, (b) ResNet18, and (c) VGG16.

TABLE I. COMPUTATION ANALYSIS UNDER
DIFFERENT EIGENVALUE THRESHOLD

Model 0.97 0.98 0.99 0.995 1

MobileNetV2 59.7% 74.3% 89.5% 98.0% 126.8%

ResNet18 78.5% 86.4% 93.8% 99.3% 114.3%

VGG16 57.8% 70.0% 83.1% 92.2% 114.4%

Fig. 5. The visualization of channel distribution of greedy DR and threshold-

based DR simulated on ResNet18 with 𝑇 = 0.995.

10.99
0.98

0.97

0.97

0.995

0.98

0.99

0.995 1

0.97

0.98

0.99
0.995 1

6. REFERENCES

[1] O. M. Parkhi, A. Vedaldi and A. Zisserman, “Deep Face

Recognition,” in Proc. of the British Machine Vision

Conference (BMVC), 2015.

[2] A. Krizhevsky, I. Sutskever and G. E. Hinton, “ImageNet

Classification with Deep Convolutional Neural Networks,” in

Advances in Neural Information Processing Systems, 2012.

[3] S.-C. B. Lo et al., “Artificial convolution neural network

techniques and applications for lung nodule detection,” IEEE

Trans. Med. Imag., vol. 14, no. 4, pp. 711–718, Dec. 1995.

[4] T.-J. Yang, Y.-H. Chen, J. Emer and V. Sze, “A method to

estimate the energy consumption of deep neural networks,” in

Proc. Asilomar Conference on Signals, Systems, and Computers,

2017.

[5] V. Sze, Y.-H. Chen, T.-J. Yang and J. S. Emer, “Efficient

Processing of Deep Neural Networks: A Tutorial and Survey,”

Proceedings of the IEEE, vol. 105, pp. 2295-2329, 2017.

[6] A. Parashar, et al., “SCNN: An accelerator for compressed-

sparse convolutional neural networks,” in Proc. ACM/IEEE

Annual International Symposium on Computer Architecture

(ISCA), 2017, pp. 27–40.

[7] R. D. Evans, L. Liu and T. M. Aamodt, “JPEG-ACT:

Accelerating Deep Learning via Transform-based Lossy

Compression,” in Proc. ACM/IEEE Annual International

Symposium on Computer Architecture (ISCA), 2020.

[8] M. Chandra, “Data Bandwidth Reduction in Deep Neural

Network SoCs using History Buffer and Huffman Coding,” in

Proc. International Conference on Computing, Power and

Communication Technologies (GUCON), 2018.

[9] S. Han, H. Mao and W. J. Dally, “Deep Compression:

Compressing Deep Neural Network with Pruning, Trained

Quantization and Huffman Coding,” in International

Conference on Learning Representations (ICLR), San Juan,

Puerto Rico, May 2-4, 2016.

[10] M. Rhu, M. O'Connor, N. Chatterjee, J. Pool, Y. Kwon and S.

W. Keckler, “Compressing DMA Engine: Leveraging

Activation Sparsity for Training Deep Neural Networks,” in

IEEE International Symposium on High Performance Computer

Architecture (HPCA), 2018.

[11] Y. Shi, M. Wang, S. Chen, J. Wei and Z. Wang, “Transform-

Based Feature Map Compression for CNN Inference,” in Proc.

IEEE International Symposium on Circuits and Systems

(ISCAS), 2021.

[12] B. Chmiel, C. Baskin, R. Banner, E. Zheltonozhskii, Y.

Yermolin, A. Karbachevsky, A. Bronstein and A. Mendelson,

“Feature Map Transform Coding for Energy-Efficient CNN

Inference,” in Proc. International Joint Conference on Neural

Networks (IJCNN), pp. 1-9, 2020.

[13] F. Xiong, F. Tu, M. Shi, Y. Wang, L. Liu, S. Wei and S. Yin,

“STC: Significance-aware Transform-based Codec Framework

for External Memory Access Reduction,” in 2020 57th

ACM/IEEE Design Automation Conference (DAC), 2020.

[14] X. Zhang, J. Zou, X. Ming, K. He and J. Sun, “Efficient and

accurate approximations of nonlinear convolutional networks,”

in Proc. IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), pp. 1984-1992, 2015.

[15] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,

Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg

and L. Fei-Fei, “ImageNet Large Scale Visual Recognition

Challenge,” International Journal of Computer Vision (IJCV),

vol. 115, pp. 211-252, 2015.

