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ABSTRACT

The estimation of reverberation time from real-world signals plays
a central role in a wide range of applications. In many scenarios,
acoustic conditions change over time which in turn requires the es-
timate to be updated continuously. Previously proposed methods in-
volving deep neural networks were mostly designed and tested under
the assumption of static acoustic conditions. In this work, we show
that these approaches can perform poorly in dynamically evolving
acoustic environments. Motivated by a recent trend towards data-
centric approaches in machine learning, we propose a novel way
of generating training data and demonstrate, using an existing deep
neural network architecture, the considerable improvement in the
ability to follow temporal changes in reverberation time.

Index Terms— Dynamic acoustic conditions, Data-centric AI,
reverberation time estimation, convolutional recurrent neural net-
works

1. INTRODUCTION

The time it takes the acoustic energy in a steady-state reverberant
sound field to decay by 60 dB, referred to as reverberation time
RT60 in seconds, is a parameter of central importance in the de-
scription of many acoustic environments. It is defined by the process
of propagation, reflection, and absorption of acoustic waves through-
out an enclosure and across its boundaries and depends on geometric
and acoustic properties of the volume or space it was measured in.
Though in principle not limited to, it is mainly used as a measure for
architectural spaces (e.g. rooms, halls, staircases).

In theory, RT60 is position independent within an enclosed vol-
ume. However, especially at wavelengths comparable to the dimen-
sions of the enclosure, variations are often observed in real-world
measurements and require averaging across multiple transmission
paths throughout the volume [1]. Another critical assumption of
measuring the reverberation time – either based on the direct mea-
surement of the energy decay curve or via the integrated acoustic
impulse response (AIR) – is constant acoustic conditions and, tradi-
tionally, the use of dedicated measurement signals. Once conditions
change, e.g., when a room door is opened or a sound source or re-
ceiver moves to a different position, a renewed RT60 measurement is
necessary. There are scenarios in which it is desired to continuously
estimate the reverberation time from real-world signals and require
the possibility to adapt to changes in acoustic conditions. Such ap-
plications pose the challenge of continuously extracting patterns of
temporally decaying acoustic energy from signals of great variety
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and estimating the decay rate of the dynamic acoustic environments
in which they were acquired.

With a wide range of potential applications in areas such as
acoustic scene analysis [2], speech enhancement [3], extended re-
ality (VR/AR) [4], acoustic environment classification [5] or audio
forensics [6], the blind estimation of RT60 from real-world signals
has seen increased interest in the past. Prior to leveraging the pat-
tern recognition and non-linear approximation capabilities of deep
neural networks (DNNs) in the recent past, traditional statistical ap-
proaches employing signal decay rate distributions and maximum
likelihood estimation were used to estimate the reverberation time
from noisy signals blindly [7–11]. While many of these approaches
produced very useful results, the non-linear approximation capabili-
ties of DNNs pushed the state-of-the-art even further. Convolutional
neural networks (CNN) were used to estimate RT60 and Speech
Transmission Index (STI) from spectro-temporal representations of
noisy, reverberant speech [12, 13]. CNNs were extended by a recur-
rent layer to form convolutional recurrent neural networks (CRNN)
that exploit sequential dependencies in the data [14, 15] and further
improve estimation accuracy [16]. The focus of other studies was on
auditory aspects of reverberation, with attempts to match artificial
reverberation with perceptual characteristics of a real recording [17]
and the blind estimation of AIRs from reverberant speech [18].

For approaches that involve DNNs for the estimation of RT60

from reverberant speech, a method of generating realistic training
data is essential. In recent studies [12, 16], the reverberant speech
was generated by convolving short segments of anechoic speech with
measured or simulated AIRs with the assumption of static acous-
tic conditions, meaning that the acoustic transmission path between
source and receiver captured in the AIR remained constant over time.
However, real-world sound fields are often subject to temporally
changing conditions, and while the solution proposed by [16] is tar-
geted towards online RT60 estimation, the authors did not investi-
gate the performance in dynamic acoustic conditions. The results
presented in this work show that the system’s performance is limited
under such conditions, at least using their proposed training scheme.
In this contribution, we aim to overcome this limitation and hence
improve the estimation accuracy in dynamically changing acoustic
environments. Motivated by a recent shift from a model-centric to-
wards a data-centric approach to various problems in machine learn-
ing, we propose a novel way of generating training data and investi-
gate its effect on the ability of a DNN to follow temporal changes in
acoustic conditions.

The remainder of the paper is organized as follows. In Section 2,
we review the CRNN architecture that is used in this study, Section 3
covers the different data generation methods that are proposed. In
Section 4, the estimation performance resulting from the different
training methods is evaluated, Section 5 concludes this paper.
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2. MODEL REVIEW

As this contribution focuses on dynamic reverberant sound fields,
we choose a network architecture suitable to provide short-time es-
timates of the reverberation time and adopt the CRNN proposed
in [16]. In the following paragraphs, the input data format, the model
architecture and the relationship between temporal resolutions of the
model input and output are discussed.

2.1. Model input

Using a gammatone filterbank [19] of 21 bands, with the center fre-
quency of the lowest band set to 100 Hz, the reverberant speech sig-
nal sampled at a rate of 16 kHz is transformed into a time-frequency
representation used in the training, validation, and testing process.
Each gammatone spectrum is approximated by linear transformation
of the short-time Fourier transform of the input signal [20], gam-
matone spectrograms are computed with a window length and hop
length of tw = 4ms and th = 2ms (frame overlap of 50%), re-
spectively.

2.2. Model architecture

In the initial CNN section of the model, time-frequency features are
extracted from the input gammatone spectrogram across six convo-
lutional layers. Each convolution is followed by a rectified linear
unit function (ReLU) and batch normalization across the five convo-
lutional channels. The encoder structure is followed by dropout reg-
ularization that helps to avoid overfitting and a reorganization of the
dimensions before the information flows through a recurrent layer
(LSTM) with a cell state size and a hidden state size of 20 neurons
each. Finally, after downsampling along the frequency dimension
by a factor of two using Max Pooling, a fully connected layer fol-
lowed by a ReLU function yields the estimate for each time step.
The model has a total of 5611 trainable parameters, hyper-parameter
optimization [21] was carried out to determine learning rate, batch
size, and dropout probability. For further details, we refer the reader
to [16].

2.3. Receptive field

It is crucial to investigate the temporal relationship between model
input and output with a potential application in real-time scenar-
ios. The CNN encoder structure at the beginning of the model con-
tains strided convolutions across six layers that result in a significant
amount of temporal compression of the input data. The total recep-
tive field r0 of this encoder structure may be computed by [22]:

r0 =

L∑
l=1

(
(kl − 1)

l−1∏
i=1

si

)
+ 1, (1)

where L is the number of layers that define the receptive field, kl and
si are the kernel size and stride of the lth and ith layer, respectively.
Hence, a signal length of ts = th(r0 − 1) + tw = 208ms is taken
into account for each short-time estimate of RT60, according to the
parametrization of the CNN section proposed in [16] (r0 = 103).
Following the stride specifications of the model and the hop length
th of the gammatone spectrogram computation, a new estimate is
computed every 64ms. Such a temporal resolution allows tracking
RT60 in scenarios in which sudden changes are expected. In com-
parison, the previously proposed CNN-based model by Gamper and
Tashev [12] produces a single estimate for a signal length of four
seconds.

Fig. 1. Distribution of RT60 in measured and simulated AIRs.

3. DATA GENERATION

3.1. Reverberant data

As outlined in Sec. 2.1, the reverberant speech used in this contribu-
tion is transformed into a time-frequency representation using a gam-
matone filterbank. To accelerate the training process and to achieve
convergence, each gammatone spectrogram is standardized [23], i.e.
each sample is made zero-mean and scaled such that its standard de-
viation is equal to one. Furthermore, spectral whitening is applied to
exclude non-linear magnitude distributions from the features learned
by the neural network. In accordance with [12] and [16], the ground
truth RT60 used during regression is obtained using the method pro-
posed by Karjalainen et al. [24].

Three anechoic speech data sets were used to generate the data in
this study: LibriSpeech ASR Corpus [25], TIMIT Acoustic-Phonetic
Continuous Speech Corpus [26] and PAVOQUE Text-to-speech Cor-
pus [27]. Measured AIRs were taken from the ACE challenge data
set [5], the IKS Aachen Impulse Response database [28], the Ope-
nAir database [29] and the EchoThief database [30]. AIRs with a
reverberation time exceeding two seconds were excluded, leaving a
total of 930 measured responses with RT60 ranging between 0.09 s
and 1.95 s. In addition to measured data, the image method [31]
was used to simulate 2000 AIRs in randomly generated enclosures
with RT60 ranging between 0.01 s and 0.83 s. The entire data was
split into training and validation data by 80% and 20%, test data for
the evaluation of all four models were generated separately, as out-
lined in Sec. 3.4. The ratio between measured and simulated AIRs in
training and validation data sets was 4 : 1. The distribution of RT60

in the training data is shown in Fig. 1.

3.2. Static and dynamic training data

Samples of fixed duration are generated that represent reverberant
speech under both static and dynamic acoustic conditions. In the
static case, a single AIR is used to reverberate the anechoic speech
sample, whereas in the dynamic case, two different AIRs are used,
with a change occurring after a predefined duration. We investi-
gate four different methods of generating reverberant speech sam-
ples, which are used to train, validate and test the model:

• Static conditions (4 sec.): Segments of anechoic speech with
a duration of four seconds, convolved with a single AIR. This
method was used in [12] and [16] and serves as a baseline.

• Static conditions (2 sec.): Segments of anechoic speech with
a duration of two seconds, convolved with a single AIR. The
aim is to prevent the model from learning temporal dependen-
cies of more than two seconds.

• Dynamic conditions (deterministic): Samples of reverberant
speech with a total duration of four seconds are generated, the
AIR used to reverberate the anechoic speech is exchanged for
a different one after two seconds.
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Fig. 2. Illustration of the ground truth interpolation: At the top, the
ground truth at the input time scale is shown where the dashed line
marks the moment of change in acoustic conditions. The bottom
plot shows the ground truth at the output time scale. The green area
indicates the segment of output frames, in which the moment of tran-
sition is located within the input frames. The smooth transition is a
result of the six consecutive convolutional layers in the model.

• Dynamic conditions (random): Samples of reverberant
speech with a total duration of four seconds are generated,
the AIR is switched at a random moment chosen between 0.8
and 3.2 seconds. This method is used to rule out the possi-
bility that the model expects the change in conditions always
after two seconds, as could be an effect of the deterministic
dynamic training condition.

An efficient way of increasing training data is by recombining ane-
choic speech segments and AIRs to generate new, essentially unseen
data. In this study, four-fold recombination was used, resulting in ap-
proximately 5252 hrs. of reverberant speech for training, validation,
and test data for each of the four conditions. The loss function used
to determine the weight update (RMSprop, adaptive learning rate op-
timization algorithm [32]) is the mean squared error (MSE) across
all time steps in each mini-batch. The change in acoustic conditions
occurs between neighboring time frames in each input sample. As
a result of this, and due to the temporal compression of the con-
volutional layers of the model, the ground truth vector is smoothed
following the kernel size and stride specifications along the temporal
dimension of the CNN encoder of the model. An illustrative example
is shown in Fig. 2.

3.3. Example

An example is shown in Fig. 3 for a single instance to illustrate
the temporal behavior of the model resulting from the four differ-
ent training methods. It is observed that the statically trained models
cannot track the transition accurately and only react slowly to the
changed acoustic conditions, with the statically trained model us-
ing two-second segments exhibiting the most stagnant update. The
temporal interpolation of the ground truth RT60 on the output time
scale, mentioned in Sec. 3.2, can also be seen for this example.

3.4. Evaluation data

Once all models are trained with the data generated according to
the four conditions, an evaluation is performed on two separate test

Gammatone spectrogram

Static training (4 sec.)

Static training (2 sec.)

Dynamic training (determ.)

Dynamic training (random)

Fig. 3. The top plot shows the estimation of the four differently
trained networks on a single sample. The input gammatone spec-
trogram and a comparison of four saliency maps [33] resulting from
the four differently trained models are shown below. RT60 changes
from 0.44 s in the first half of the sample to 1.52 s in the second half,
the switch occurs at t = 0 s.

sets. For one, a dynamic data set is generated that contains rever-
berant speech segments with a duration of six seconds, including a
change in acoustic conditions after three seconds. This presents all
of the differently trained models with dynamic data of unseen length
while the fixed change in acoustic conditions after three seconds en-
ables convenient averaging across samples. Additionally, a second
test data set representing static acoustic conditions with a duration
of ten seconds is generated to investigate if the increased temporal
adaptability resulting from dynamic training comes at the cost of
reduced accuracy under static conditions. Both test sets use all avail-
able source data by generating unique pairings of anechoic speech
and AIRs for the four individual training sets.

4. PERFORMANCE EVALUATION

4.1. Metrics

Table 1 provides an overview of various metrics that reflect the per-
formance of the differently trained models under dynamic and static
acoustic conditions. In the dynamic case, mean µ and standard de-
viation σ of the squared error at all time steps in each sample are
averaged over the entire test set and are indicators of the overall es-
timation accuracy and temporal reactivity of the model. Another
aspect is the estimation accuracy at the last time step in each sample,



DYNAMIC TEST DATA STATIC TEST DATA

µ σ MSE ρ Bias MAPE MSE ρ Bias MAPE

Static training (4 sec.) 0.2185 0.1386 0.1216 0.4881 0.0815 50.89 0.0219 0.9308 −0.0369 18.86
Static training (2 sec). 0.2225 0.1457 0.1502 0.4948 0.1922 68.08 0.0347 0.8767 0.044 23.57

Dynamic training (determ.) 0.1773 0.1153 0.0637 0.7677 −0.0632 26.87 0.0278 0.8993 −0.0197 19.88
Dynamic training (random) 0.1551 0.1018 0.0509 0.8136 −0.0406 23.86 0.0268 0.9069 −0.0365 18.69

Table 1. Overview over various metrics describing the performance of the model trained with four different data sets, evaluated on dynamic
and static test data.

after the change in acoustic conditions has occurred and the model
processed the entire sample. For both static and dynamic conditions,
the last step’s performance is evaluated based on four different met-
rics: MSE, Pearson correlation coefficient ρ, bias and mean absolute
percentage error (MAPE).

Under dynamic conditions, the two networks trained with dy-
namic samples exhibit consistently better metrics with a reduction
in MSE by over 50% and an improvement of the correlation coef-
ficient by approximately 65% when compared to the static training
using four seconds. At the same time, mean and standard deviation
are also reduced by approximately 30%. Under static acoustic con-
ditions, the dynamically trained models perform only slightly less
accurately.

4.2. Temporal evaluation

In addition to the analysis of performance metrics, three aspects
that describe the temporal behaviour of the model are investigated
qualitatively. The temporal characteristics of the estimation error re-
sponse to changing acoustic conditions, the degree of renewed net-
work activation based on frequency-averaged saliency maps [33] and
the importance attribution of new information following the acous-
tic change based on frequency-averaged integrated gradients [34].
Fig. 4, top, shows the MSE response for the four training conditions,
averaged over the entire test data set and separated by the direction of
change in RT60. The difference in temporal behaviour is noticeable:
when a transition from dry to reverberant acoustic conditions occurs,
the statically trained models are only able to gradually update their
estimation, while the dynamically trained models are quick to react.
Furthermore, the dynamically trained models show improved accu-
racy with a lower average MSE before the change in conditions for
reverberant environments.

Another aspect is the magnitude of the frequency averaged, nor-
malized gradients resulting from the four differently trained net-
works. The statically trained models do not significantly react to
the change in conditions and can only update the estimation gradu-
ally. The dynamically trained network’s ability to track the acoustic
change is indicated by the renewed activation of neurons concen-
trated around the moment of transition in Fig. 3, with the dynamic
(random) training condition exhibiting the largest gradients. Re-
flected by the average integrated gradients in Fig. 4, the two statically
trained models only attribute importance to the beginning of each
sample while later parts are taken into account to a lesser degree.
In contrast, the models trained with dynamic samples continuously
consider new information with a slight emphasis on the moment of
changing acoustic conditions.

One interesting insight arises from the comparison of training
conditions Static (2 sec.) and Dynamic (deterministic). While the
total number of pairings of anechoic speech and AIRs seen by the
model during training is equal in both conditions, the dynamically

Fig. 4. Three plots describing the temporal behaviour of the four
trained networks, the change in acoustic conditions occurs at t = 0.
Top: Average squared error separated by the direction of change in
RT60; Middle: frequency-averaged saliency; Bottom: feature im-
portance attribution based on frequency-averaged integrated gradi-
ents.

trained model performs considerably more accurately when acoustic
conditions change. This observation supports the hypothesis that a
portion of the convolutional features and recurrent modeling learned
by the dynamically trained network relates to the detection of and
reaction to changing acoustic conditions.

5. CONCLUSION

We investigated a previously proposed neural network [16] for blind
RT60 estimation under dynamic acoustic conditions and identified
an insufficient ability to track temporal changes in the acoustic
properties of the environment. We proposed a novel way of gen-
erating training data that results in a considerable improvement in
the model’s capability of estimating changing RT60 while incur-
ring only a slight loss of estimation accuracy under static acoustic
conditions. The findings presented in this study illustrate the great
potential of data-centric approaches to existing problems in acoustic
scene analysis in particular and machine learning in general.
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