arXiv:2110.08352v2 [cs.SD] 20 Jul 2022

OMNI-SPARSITY DNN: FAST SPARSITY OPTIMIZATION FOR ON-DEVICE STREAMING
E2E ASR VIA SUPERNET

Haichuan Yang*, Yuan Shangguan®, Dilin Wang*, Meng Li, Pierce Chuang,
Xiaohui Zhang, Ganesh Venkatesh, Ozlem Kalinli, Vikas Chandra

Meta Al

ABSTRACT

From wearables to powerful smart devices, modern automatic
speech recognition (ASR) models run on a variety of edge de-
vices with different computational budgets. To navigate the
Pareto front of model accuracy vs model size, researchers
are trapped in a dilemma of optimizing model accuracy by
training and fine-tuning models for each individual edge de-
vice while keeping the training GPU-hours tractable. In this
paper, we propose Omni-sparsity DNN, where a single neu-
ral network can be pruned to generate optimized model for
a large range of model sizes. We develop training strate-
gies for Omni-sparsity DNN that allows it to find models
along the Pareto front of word-error-rate (WER) vs model size
while keeping the training GPU-hours to no more than that
of training one singular model. We demonstrate the Omni-
sparsity DNN with streaming E2E ASR models. Our results
show great saving on training time and resources with similar
or better accuracy on LibriSpeech compared to individually
pruned sparse models: 2%-6.6% better WER on Test-other.

Index Terms— Neural Network Pruning, Supernet, Spar-
sity Optimization, E2E ASR

1. INTRODUCTION

End-to-End (E2E) automatic speech recognition (ASR) mod-
els have gained popularity for deployment on edge devices |1}
2|]. Neural network pruning is one of the key techniques to
reduce E2E ASR model size while maintaining reasonable
model accuracy. However, ASR models usually live in a vari-
ety of edge devices — from wearables with tiny RAM to pow-
erful accelerator-enabled smart devices — each with its own
set of computational constraints. How to efficiently optimize
the WERSs of models on different devices without the burden
of repeatedly training is an open challenge.

Recent works explored training multiple models with one
framework, e.g., [3},4} 1516} 7, 8]]. The key idea is to encapsu-
late different models into a supernet. A supernet is a weight-
sharing graph, wherein each model lives as a sub-network in
the supernet. The supernet training coordinates the updates
of all sub-networks, and optimizes a single set of parameters

*Equal Contribution

that ensure all sub-networks simultaneously reach good per-
formance at the end of the training. Hence once the supernet
is trained, one can run typical search algorithms, e.g., evolu-
tionary search, to find the best models that satisfy the resource
constraints of interest. This search process is often efficient
since there is no need of re-training and fine-tuning.

Inspired by the success of the supernet, in this work, we
propose the construction of a supernet for E2E ASR, dubbed
Omni-sparsity DNN, to efficiently explore the search space
of sparsity in ASR models. By applying pruning masks (i.e.
masks with zeroes) on each layer of the Omni-sparsity DNN
weights, we can sample many sub-networks of different sizes,
whose weights are shared and optimized jointly in the Omni-
sparsity setup. The proposed Omni-sparsity DNN thus en-
joys two key benefits that the supernet framework provides.
Firstly, it maintains a single set of supernet model weights,
while generating sparse models for any target sparsity. The
generated sparse models satisfy different device constraints
along the word-error-rate (WER) vs model-size Pareto front
— they are on-par or better than individually optimized mod-
els. Secondly, Omni-sparsity supernet requires the similar
amount of training time and resource of training one single
sparse model.

Most related to our approach, the DSNN [9] jointly opti-
mizes a number of sparse models with pre-defined sparsity
ratios by sharing their underlying model parameters. The
key drawback of DSNN is that it trains a few candidate sub-
networks with fixed model configurations. Not only does
DSNN require large amount of training resources, when a
new edge device with a distinct model-size constraint is pre-
sented to DSNN, it also needs to retrain the models. The
Omni-sparsity DNN, however, could directly generate an op-
timized model to fit this new device.

In Section we describe the Omni-sparsity supernet
training and the sub-network searching mechanisms. We
develop three key strategies to guarantee the accuracy of
Omni-sparsity DNN training under a tight training budget: 1)
an efficient in-batch sandwich sampling strategy to sample
the sub-networks from the supernet such that all sub-networks
will be sufficiently optimized; 2) a robust pruning criterion,
called Adam-pruning, to generate consistent pruning mask
during the training, and consequently stabilizing the training

Independently choose
sparsity for different layer.
Search the best config /
model for any overall
sparsity budget.

o990

75% Overall Sparsity Config

Search

= Train _

B e L

60% Sparsity 70% Sparsity 80% Sparsity

50% Sparsity

Fig. 1: During training, the supernet samples layerwise spar-
sity ratios, and applies the corresponding sparse masks to
compute the gradients of the shared supernet weight. After
training, we use an evolutionary search scheme to find the
optimized models along the Pareto front of different model
sizes.

procedure of Omni-sparsity DNN; 3) an adaptive dropout
scheme that regularizes different sub-networks to different
extents according to their model capacities. We demonstrate
the results of the Omni-sparsity optimization scheme with
streaming recurrent neural network transducers (RNN-Ts)
speech models (see Section [3). With one training job, the
Omni-sparsity DNN finds a family of sparse models, with
50%- to 80%-sparsity, that perform on-par with individually
trained models on Librispeech test-clean set, and 2%-6.6%
better in WER on test-other (see Section).

2. EFFICIENT OMNI-SPARSITY DNN
OPTIMIZATION

In this section, we introduce our Omni-sparsity DNN op-
timization method. Specifically, we train a dense supernet
which can directly generate different sparse sub-networks by
masking the model weights, and then use evolutionary search
to find the best sparsity configurations for different model
size budgets.

2.1. Supernet-based layer-wise sparsity training
Let 0 be the set of the model parameters, and let L be the
number of layers in the DNN. We define the layerwise spar-
sity s := [s1,82,...,81] € Q, where Q is a search space
that contains all the possible sparsity configurations, e.g.,
{0.5,0.6,0.7}L. We denote 6, the corresponding weights
parameters of the sparisfied sub-network by applying the
pruning mask with sparsity s.

To train a supernet such that all its sub-networks simul-
taneously reach good performance can be formulated as the
following optimization problem:

Hbin]ESNQ]E(w,y)N'D”" é(y7 €Z; 98) ; (D
where D' is the training data and /(-) represents the training

loss, e.g., (y, x;05) = —log p(y|x; 0s), is the RNN-T trans-
ducer loss [[L0] computed with alignment restrictions [[L1].

Eqn [T] poses three main challenges to our model training
and optimization: 1) Since we sample layerwise sparsity in
the search space Q during training, we need to find ways to
guarantee that all sub-networks can be sufficiently sampled
and optimized within reasonable training budget. 2) to ob-
tain highly accurate sub-networks, supernet training requires
stable gradients; sampling new sparse masks at each train-
ing step induces instability in the supernet gradient. 3) the
supernet contains both over-fitting (for the dense model) and
under-fitting (for sparse models) tendencies, making regu-
larization during training tricky. We therefore propose three
training mechanisms to address these issues.

1) Efficient in-batch sandwich sampling: Ideally, one
would like to sample as many sub-networks as possible dur-
ing training to ensure the convergence of all sub-networks
in the supernet. Large sampling size, however, incurs large
training costs. Motivated by the sandwich sampling rule in
the Slimmable networks [12], at each training step, we only
sample four sub-networks: the smallest, the largest and two
random ones. Meanwhile, to ensure the total training cost of
the supernet is comparable to the cost of training one single
network, we limit each sub-network to only see a portion of
the training batch at each step. More precisely, given an mini-
batch B, we split the batch into four parts { By, - - - , B4} with
equal size, and train each of the four sub-networks on these
parts separately. This can be conveniently implemented with
distributed data parallel, such that each machine samples a
different sub-networks but the batch gradients are aggregated
from all machines. Additionally, we leverage knowledge
distillation to accelerate the training of small sub-networks,
similar to the recommended supernet training practice in the
literature [4} [13]. Each sparse sub-network learns from the
logits produced by the corresponding dense supernet. Note
that the training cost will increase by 18% in GPU-hours with
in-place knowledge distillation.

2) Robust sparse mask generation: Each sub-network
drawn from the supernet is pruned via a sparse mask fol-
lowing a predefined pruning criterion. In [14], the authors
used a weight-magnitude based pruning criterion to decide
which weights to zero out. In practice, using the gradient
information can achieve better pruning results [15]. Con-
sider a gradient-based criterion where we characterize the
importance of a weight/connection, w, as:

[£(w) = £0)] = |w][Vwl]. 2

The gradient term in Eqn is often noisy; its variance is
exacerbated by supernet sampling different sparsity config-
urations at each training step. To improve supernet perfor-
mance, and at the same time stabilize the pruning criterion,
we propose the use of moving average of gradients to stabi-
lize the pruning criterion. Specifically, we replace |V, ¢| with
the square root of the moving average of the second order gra-
dient moments in Adam. And we refer to our pruning algo-
rithm as Adam-pruning, which is still as efficient as the typical

Ours
Single

10.8
10.6
10.4
10.2
10.0

WER (test-other)

o ©
o ©

27.5 30.0 32.5 35.0 37.5 40.0 425 45.0

(a) Model size (MB)

120 ¢ Ours
5 115 . o DSNN
= Single
— o
? 11.0 o o
%osl O "

10.5 o
£ D R e 8
& 10.0 O e o
m
2 o5

9.0

2000 3000 4000 5000 6000 7000 8000
(b) Total training time (GPU hours)

Fig. 2: Training time v.s. WER for different sparse models. Marker size in (b) is proportional to the number of nonzero weights.

weight-magnitude based or gradient-based pruning approach,
but it’s more suitable for the supernet training due to damp-
ening effect from the large momentum term on the gradients.
3) Adaptive dropout: Dropout is an important regularization
technique to reduce over-fitting in E2E ASR models. Previ-
ously, an unchanged dropout value is applied to the layers of
a network throughout the training process. The sub-networks
in a supernet, however, over-fit to the training data to different
degrees, and thus find it sub-optimal to adopt the same drop-
out regularization during training. Intuitively, a large dropout
for sparse models will likely cause under-fit; a small dropout
for dense models might lead to over-fit. We propose adap-
tive dropout — we regularize different sub-networks to differ-
ent degrees according to the sub-network’s modeling capac-
ity. To do so, we set the dropout rate based on the sparsity
setting on the fly. Specifically, for each layer with sparsity s,
we set its dropout rate to 0.1 x (1.0 — s). Empirically, we
find that adaptive dropout dramatically improves the WER of
supernet-trained models.

In-batch sandwich sampling, Adam-pruning and adaptive
dropout allow us to train the supernet and its sub-networks ef-
fectively with a small training budget. We examine their effi-
ciency and effectiveness in our ablation studies (Section[d.3).

2.2. Supernet-based Pareto Searching

After training the supernet, we expect all its sub-networks,
with different sparsity configurations, well optimized. To
find a set of sparse models with the best WER vs. run-
time efficiency could then be solved with an evolutionary
search. For example, consider a set of model size con-
straints {71, - , ¢ }, finding the corresponding optimal sub-
networks from the supernet that satisfy the constraints can be
achieved as follows,

{ I’I;hl E(m,y)N’D”l |:£(y7 5 98,):| , St M(sz) < Ti}a 3

where M(s;) denotes the model size of the sparse models
with sparsity configuration s;. DV represents the validation
dataset. We use loss on the validation set as the surrogate met-
ric to rank the performance of different sub-networks. For
each evolutionary search iteration, we perform random mu-
tate and cross-over for the layerwise sparsity configuration

on the current Pareto front, and then compute their validation
loss and update the new Pareto front. Optimal sub-networks
determined by the evolutionary search can be directly sam-
pled from the supernet without the need of fine-tuning and re-
training. The overall search cost is orders of magnitude lower
than training: 50 GPU-hours to search and compute valida-
tion loss for 4000 networks on Librispeech.

3. EXPERIMENTS

In this section, we demonstrate the efficiency and effective-
ness of Omni-sparsity DNN. With one training process, our
supernet simultaneously discovers a set of Pareto models with
diversified encoder sparsity ranging from 50% to 80%, while
keeping the GPU-hours similar to that of a single network.

3.1. Experimental Setup

Data: We train our models with the LibriSpeech 960h cor-
pus [16]. We extract 80-dimensional log Mel-filterbank fea-
tures from per 25ms window of audio, and strides the window
forward in increments of 10ms. We further augment the input
features with speed perturbation [17], at ratio 0.9, 1.0 and 1.1.
Spectrum data augmentation [18] is then added to the features
with mask parameter F=27, and 2 time masks with max time-
mask ratio p=0.2. We use the 10.7h Librispeech dev-clean
and dev-other data (without augmentation) as the validation
dataset for evolutionary search. All the models are trained for
180 epochs unless otherwise specified.

Network Architecture: We train speech recognizers with the
recurrent neural network transducers (RNN-T) models [10}
19]. A typical RNN-T consists of an encoder, a predictor and
a joiner network. We refer readers to [[1] for a detailed expla-
nation on streaming RNN-T models. In particular, we use the
Emformer-based [20] RNN-T model. We sandwich 20 layers
of Emformer, each with 8 attention heads, 512 hidden units,
and 2048 feed forward network dimensions, between two lin-
ear projection layers. Since the encoder occupies majority of
the parameters and computation, we focus only on pruning
the encoder. Our model has 77M parameters in total, and the
model weights undergo 8-bit post-training quantization dur-
ing inference.

Single noKD Ours Single w/KD
Sprsty WER WER WER size
Yzeros | clean| other | clean| other| clean| other| MB
0% 34 9.3 3.7 9.2 n/a nfa | 77

50% 3.7 9.7 39| 95| 36| 98 | 45

60% 391 100] 39| 96 | 3.7 | 100]| 39

70% 39 | 106 | 40| 99| 38 | 102 | 32

80% 42 | 109 | 41 | 103| 39 | 103 | 26

GPU-hr 6912 2304 8448

Table 1: WER of sparse models on Librispeech test sets from
individually pruned models with no KL-D, our Omni-sparsity
DNN, and KL-D teacher-student trained individual models.
Our method generates all models from one supernet.

3.2. Omni-sparsity DNN search space

We construct a search space to allow each sub-network sam-
ple a sparsity ratio from {0.0,0.5,0.6,0.7,0.8} at a per layer
granularity. Zero sparsity is not used for sampling random
networks or the evolutionary search but only for training the
dense network. To get the sparse layer, we use Adam-pruning
criterion and always recompute the pruning mask at each
pruning step. Additionally, we use 8x1 block-wise pruning
patterns [21] to ensure fast inference on edge devices. Em-
pirically, training extremely sparse networks from scratch
tends to diverge, we further propose to progressively increase
our search space. Specifically, we follow the cubic schedule
in [22] with interval 256 (for 256 steps) to dynamic adjust the
maximum possible pruning ratio at each step.

4. RESULTS AND DISCUSSIONS

4.1. Comparison with Individually Pruned Models

The Omni-sparsity DNN allows us to find sub-networks of
various model sizes with one training job. It presents huge
GPU-hour resource saving when compared to independently
trained sparse models. In Table[I] we pick four sparsity set-
tings, 50% to 80% sparsity ratios, and outline such WER and
training time comparisons. Since our supernet is trained with
in-place knowledge distillation, we also provide strong base-
lines of individually trained models with distillation, wherein
the teacher is a pre-trained dense model.

As shown in Table [T} the overall training cost of our
method is about 3x smaller compared to the training scratch
strategy; the models trained from our supernet in achieves
the best WER on the test-other dataset. Besides the sparse
models listed Table[I] our approach can also flexibly generate
other sparse models at no additional training costs, as shown
in Figure [J(a), where we show the sparsity Pareto front.

4.2. Improvement on Training Efficiency

As introduced in Section |1, Wu et al. [9] developed DSNN
that also jointly optimize four sub-networks that share the un-
derlying weights with sparsity. Due to the uniform layerwise

sparsity w/o w/ Model | w/ Supernet
% Finetuning | Finetuning | Finetuning
60% 39/9.6 3.9/9.7 39/9.6
70% 4.0/99 4.0/9.8 39799
Table 2: On the effectiveness of efficient sandwich sampling.
model sparsity WER size
% test-clean | test-other | MB
Baseline 4.2 10.7
+ Adam-pruning 60% 4.0 10.0 39
+ Adaptive Dropout 39 9.6
Baseline 4.4 11.1
+ Adam-pruning 70% 4.1 10.4 32
+ Adaptive Dropout 4.0 9.9

Table 3: On the impact of adam prune and adaptive dropout.

sparsity set-up, DSNN lacks the ability to generate model
with new sparsity targets: if DSNN is trained with 0.0, 0.5,
0.7 sparsity ratios, it can not generate a model of 0.55 spar-
sity. We also compare our Omni-sparsity DNN with DSNN
in Figure [J(b). The dot size corresponds to the model size
in Figure Jb) — the largest model has the biggest dot and
vice versa. We train our supernet for 120 and 180 epochs,
respectively. Since DSNN requires training all sub-networks
at each training step, it is relatively computationally expen-
sive. We set the number of epochs of DSNN to be 40, 60,
120 and 180 respectively to show how WER goes with longer
training time. As Figure[2]shows, our Omni-sparsity supernet
converges much faster and yields significantly better WER
compared to DSNN with similar amount of training budget.

4.3. Ablation Study

In Section @ we introduce three techniques, in-batch sand-
wich sampling, Adam-pruning and adaptive dropout. In this
section, we conduct ablation studies to further verify the ef-
fectiveness of each of these training technique. In Table[2] we
show the supernet is already sufficiently trained with our pro-
posed sandwich sampling, as further training and fine-tuning
cannot improve the model WER. In Table 3] we show that
both Adam-pruning and adaptive dropout non-trivially im-
prove the WERSs of sparse sub-networks in the supernet.

5. CONCLUSION

In this work, we propose the Omni-sparsity DNN, which in-
curs similar GPU-hours of training time as one single sparse
model does, and yet generates various optimized sparse mod-
els to fit the constraints of a variety of edge devices. We
proposed several effective methods to train the Omni-sparsity
DNN, balancing training speed and model stability with
model accuracy. These include Adam-pruning, adaptive
dropouts, and in-batch sandwich sampling. We outline how
evolutionary search can be efficiently used to find optimal
sub-networks in the Omni-sparsity DNN.

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

6. REFERENCES

Yanzhang He, Tara N Sainath, Rohit Prabhavalkar, Ian
McGraw, Raziel Alvarez, Ding Zhao, David Rybach,
Anjuli Kannan, Yonghui Wu, Ruoming Pang, et al.,,
“Streaming end-to-end speech recognition for mobile
devices,” in Proc. of ICASSP, 2019.

Chanwoo Kim, Dhananjaya Gowda, Dongsoo Lee,
Jiyeon Kim, Ankur Kumar, Sungsoo Kim, Abhinav
Garg, and Changwoo Han, “A review of on-device fully
neural end-to-end automatic speech recognition algo-
rithms,” in Proc. of ACSSC, 2020.

Jiahui Yu and Thomas S Huang, “Universally slimmable
networks and improved training techniques,” in Proc. of
IEEE/CVF ICCV, 2019.

Jiahui Yu, Pengchong Jin, Hanxiao Liu, Gabriel Bender,
Pieter-Jan Kindermans, Mingxing Tan, Thomas Huang,
Xiaodan Song, Ruoming Pang, and Quoc Le, “Bignas:
Scaling up neural architecture search with big single-
stage models,” in European Conference on Computer
Vision. Springer, 2020, pp. 702-717.

Han Cai, Chuang Gan, Tianzhe Wang, Zhekai Zhang,
and Song Han, “Once-for-all: Train one network and
specialize it for efficient deployment,” in Proc. of ICLR,
2020.

Hanrui Wang, Zhanghao Wu, Zhijian Liu, Han Cai,
Ligeng Zhu, Chuang Gan, and Song Han, “Hat:
Hardware-aware transformers for efficient natural lan-
guage processing,” in Proc. of 58th ACL, 2020.

Varun Nagaraja, Yangyang Shi, Ganesh Venkatesh,
Ozlem Kalinli, Michael L Seltzer, and Vikas Chandra,
“Collaborative training of acoustic encoders for speech
recognition,” Proc. of Interspeech, 2021.

Amirkeivan Mohtashami, Martin Jaggi, and Sebastian U
Stich, “Simultaneous training of partially masked neural
networks,” arXiv preprint arXiv:2106.08895, 2021.

Zhaofeng Wu, Ding Zhao, Qiao Liang, Jiahui Yu, An-
mol Gulati, and Ruoming Pang, “Dynamic sparsity neu-

ral networks for automatic speech recognition,” in Proc.
of ICASSP, 2021.

Alex Graves, “Sequence transduction with recurrent
neural networks,” in Proc. of ICML Workshop on Rep-
resentation Learning, 2012.

Jay Mahadeokar, Yuan Shangguan, Duc Le, Gil Keren,
Hang Su, Thong Le, Ching-Feng Yeh, Christian Fuegen,
and Michael L Seltzer, “Alignment restricted streaming
recurrent neural network transducer,” in Proc. of IEEE
SLT, 2021.

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

(20]

(21]

(22]

Jiahui Yu, Linjie Yang, Ning Xu, Jianchao Yang, and
Thomas Huang, “Slimmable neural networks,” in Proc.
of LCLR, 2018.

Dilin Wang, Chengyue Gong, Meng Li, Qiang Liu, and
Vikas Chandra, “Alphanet: Improved training of super-
net with alpha-divergence,” Proc. of ICML, 2021.

Yuan Shangguan, Jian Li, Qiao Liang, Raziel Alvarez,
and Ian McGraw, “Optimizing speech recognition for
the edge,” in MLSys On-device Intelligence Workshop,
2019.

Nambhoon Lee, Thalaiyasingam Ajanthan, and Philip HS
Torr, “Snip: Single-shot network pruning based on con-
nection sensitivity,” arXiv preprint arXiv:1810.02340,
2018.

Vassil Panayotov, Guoguo Chen, Daniel Povey, and San-
jeev Khudanpur, “Librispeech: an asr corpus based on
public domain audio books,” in Proc. of ICASSP, 2015.

Tom Ko, Vijayaditya Peddinti, Daniel Povey, and San-
jeev Khudanpur, “Audio augmentation for speech recog-
nition,” in Proc. of Interspeech, 2015.

Daniel S Park, William Chan, Yu Zhang, Chung-Cheng
Chiu, Barret Zoph, Ekin D Cubuk, and Quoc V Le,
“Specaugment: A simple data augmentation method for

automatic speech recognition,” Proc. of Interspeech,
2019.

Zhifu Gao, Yiwu Yao, Shiliang Zhang, Jun Yang, Ming
Lei, and Ian McLoughlin, “Extremely low footprint
end-to-end asr system for smart device,” in Proc. of In-
terspeech, 2021.

Yangyang Shi, Yongqiang Wang, Chunyang Wu, Ching-
Feng Yeh, Julian Chan, Frank Zhang, Duc Le, and Mike
Seltzer, “Emformer: Efficient memory transformer
based acoustic model for low latency streaming speech
recognition,” in Proc. of ICASSP, 2021.

Sharan Narang, Eric Undersander, and Gregory Di-
amos, “Block-sparse recurrent neural networks,” arXiv
preprint arXiv:1711.02782, 2017.

Michael Zhu and Suyog Gupta, “To prune, or not to
prune: Exploring the efficacy of pruning for model com-
pression,” in Proc. of ICLR, 2018.

	1 Introduction
	2 Efficient Omni-Sparsity DNN Optimization
	2.1 Supernet-based layer-wise sparsity training
	2.2 Supernet-based Pareto Searching

	3 Experiments
	3.1 Experimental Setup
	3.2 Omni-sparsity DNN search space

	4 Results and Discussions
	4.1 Comparison with Individually Pruned Models
	4.2 Improvement on Training Efficiency
	4.3 Ablation Study

	5 Conclusion
	6 References

