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ABSTRACT
Zeroth-order methods have become important tools for solv-
ing problems where we have access only to function evalua-
tions. However, the zeroth-order methods only using gradient
approximations are n times slower than classical first-order
methods for solving n-dimensional problems. To acceler-
ate the convergence rate, this paper proposes the zeroth or-
der randomized subspace Newton (ZO-RSN) method, which
estimates projections of the gradient and Hessian by random
sketching and finite differences. This allows us to compute
the Newton step in a lower dimensional subspace, with small
computational costs. We prove that ZO-RSN can attain lower
iteration complexity than existing zeroth order methods for
strongly convex problems. Our numerical experiments show
that ZO-RSN can perform black-box attacks under a more
restrictive limit on the number of function queries than the
state-of-the-art Hessian-aware zeroth-order method.

Index Terms— Zeroth-order optimization, sketching
techniques, Newton-type method, adversarial black-box at-
tacks, convolutional neural network.

1. INTRODUCTION

Several applications in machine learning, signal processing
and communication networks can often be cast into optimiza-
tion problems, where gradients are difficult or even infeasible
to compute. Popular application examples include optimal
hyper-parameter tuning for learning models [1, 2], black-box
adversarial attacks on neural network models [3, 4, 5, 6] and
sensor selection problems in smart grids or wireless networks
[7, 8, 9]. This motivates the study of the zeroth-order meth-
ods. A prominent type of zeroth order methods uses function
value differences to estimate the gradients [10, Section 3.4].
However, these methods are much slower than classical gra-
dient descent [11], and also suffers from poor performance
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particularly for ill-conditioned problems. An alternative way
to improve their performance is to incorporate the second or-
der information into zeroth-order methods. However, com-
puting the full Hessian matrix can heavily increase the num-
ber of function evaluations and make the Newton step hard
to compute, especially for high-dimensional problems. This
necessitates us to approximate the Hessian matrix in a lower-
dimensional subspace.

Ye et al.[12] developed the Hessian-aware zeroth order
(ZOHA) methods, which integrate Hessian information into
zeroth-order methods. The power-iteration based method
ZOHA-PW has a lower query complexity than the gradient-
estimating method by [11] when the eigenvalues of the Hes-
sian decay sufficiently quickly. However, the power iteration
method requires O(n) function queries per iteration for n-
dimensional problems, which is expensive when n is large.
To decrease the query cost, they proposed the heuristic meth-
ods ZOHA-Gauss-DC and ZOHA-Diag-DC, which estimate
the Hessian based on a limited number of random directions.
However, no complexity bounds are provided for them.

Another approach to reduce the times of computing Hes-
sian information for high-dimensional problems is to use
randomized sketching techniques [13, 14, 15]. These sketch-
ing techniques construct lower dimensional sub-problems,
which can be solved within small computation times, and
enable classical optimization algorithms to have better scal-
ability. For instance, a randomized subspace newton (RSN)
method [14] exploits the sketching techniques on the Newton
method to solve the problems with very large dimension and
to achieve accelerated convergence rate.

In this paper, we propose Hessian-based zeroth-order al-
gorithms using sketching techniques for huge-dimensional
problems, called zeroth-order RSN (ZO-RSN). The methods
exploit finite differences and sketching to approximate pro-
jections of the gradient and Hessian. We provide complexity
bounds and prove that under certain conditions ZO-RSN
attains lower query complexity than existing zeroth-order
algorithms for strongly convex problems. Finally, our exper-
iments with black-box attack problems on a convolutional
neural network show that ZO-RSN has an overall compet-
itive performance and higher success rate, compared to the
ZOHA-Gauss-DC method in [12].
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1.1. Notation

For x ∈ Rn and M � 0, ‖x‖2 and ‖x‖∞ are the `2 and `∞
norm, respectively, and ‖x‖2M = xTMx. Given the sketch-
ing matrix S ∈ Rn×m, s1, s2, . . . , sm ∈ Rn are its columns.
For f : Rn → R, g(x) = ∇f(x) and H(x) = ∇2f(x) are its
gradient and Hessian. The function f(x) is L-Lipschitz con-
tinuous if there exists a positive constant L such that ‖f(y)−
f(x)‖2 ≤ L‖y − x‖2 for all x, y ∈ Rn, and µ-strongly con-
vex if there exists a positive constant µ such that f(y) ≥
f(x)+〈∇f(x), y−x〉+(µ/2)‖y−x‖22 for all x, y ∈ Rn.We
also state that the differentiable function f(x) is Ls-smooth if
its gradient g(x) is Ls-Lipschitz continuous. Finally, for any
y ∈ Rn, ∆yf(x) = f(x+ y)− f(x).

2. PROBLEM FORMULATION

We consider the unconstrained optimization problem

minimize
x∈Rn

f(x), (1)

where the dimension n could be very large. Here, f(x) is
a three times differentiable and µ-strongly convex function,
which is bounded from below and has its minimum value f∗

at the point x∗. g(x) and H(x) are also L1- and L2-Lipschitz
continuous. To facilitate the analysis, we further make the
following standard assumption on f(x).

Assumption 1 ([14, 16]). There exists L̂ ≥ µ̂ > 0 such that
for any x, y ∈ Rn:

f(x) ≤ f(y) + g(y)T (x− y) + (L̂/2)‖x− y‖2H(y), (2)

f(x) ≥ f(y) + g(y)T (x− y) + (µ̂/2)‖x− y‖2H(y). (3)

Assumption 1 states the smoothness and strong convexity
of f(x) under the norm weighted by its Hessian ‖ · ‖H(x).
Also, the L̂-relative smoothness and µ̂-relative convexity ex-
ist as a result of the L1-smoothness and µ-strong convexity
assumption on f(x), as shown below:

Proposition 2.1 ([14, 16]). A function f(x) is c-stable on
a domain D if ∀y, z ∈ D, ‖z − y‖2H(y) and there exists a
constant c ≥ 1 such that c = ‖z − y‖2H(z)/‖z − y‖

2
H(y). If

f(x) is µ-strongly convex and L1-smooth, then f is (L1/µ)-
stable. Furthermore, if f(x) is c-stable, then Assumption 1
holds with L̂ ≤ c and µ̂ ≥ 1/c.

2.1. RSN Methods

The randomized subspace Newton (RSN) method [14] is a
popular inexact Newton method for solving huge-dimensional
problems. This method solves an exact Newton system re-
stricted to a random subspace. Given a fixed step-size γ > 0
and an initial point x0 ∈ Rd, the iterate xk of the RSN method
is updated via:

xk+1 = xk + γSkλk, S
T
k H(xk)Skλk = −STk g(xk), (4)

where Sk ∈ Rn×m stores m vectors that span the randomly
selected subspace of Rn. The next lemma characterizes the
decrease in the function value from the ZO-RSN method (4).

Lemma 1. Consider the RSN method (4) for solving Problem
(1). If γ ≤ 1/L̂, then

f(xk+1) ≤ f(xk)− (γ/2)‖g(xk)‖2Sk(ST
k H(xk)Sk)†ST

k
. (5)

This descent lemma for the RSN method can be used to
prove its linear convergence toward the exact optimum [14].
Furthermore, to implement the RSN method STk H(xk)Sk
and STk g(xk) are computed efficiently by various sketch-
ing techniques such as sub-Gaussian sketches, randomized
orthonormal system sketches, random sampling sketches
and the Iterative Hessian Sketch [17] as well as the fast
Johnson-Lindenstrauss sketch for problems with the appro-
priate structure [18]. These sketching techniques allow for
computing λk with very small linear equation systems. If
m� n, then λk in Eq. (4) can be solved quickly by inverting
STk H(xk)Sk ∈ Rm×m.

3. ZEROTH-ORDER RSN METHODS

In this section, we introduce the zeroth-order randomized sub-
space Newton (ZO-RSN) method, which builds on the RSN
method. The iterate xk of the ZO-RSN algorithm is updated
according to:

xk+1 = xk + γSkλ̃k, and H̃Sk
(xk)λ̃k = −g̃Sk

(xk). (6)

Here g̃Sk
(xk) and H̃Sk

(xk) are approximations of the sketched
gradient and Hessian respectively. For a positive scalar α,
they can be computed via:

[g̃Sk
(xk)]i := ∆αsi,kf(xk)/α ≈ sTi,kg(xk),

and

[H̃Sk
(xk)]i,j := ∆αsi,k∆αsj,kf(xk)/α2 ≈ sTi,kH(xk)sj,k,

for all i = 1, . . . ,m. Similarly to Lemma 1, the ZO-RSN
method can be proved to achieve the following bound:

f(xk+1) ≤ f(xk)−γ
2
‖g(xk)‖2Sk(ST

k H(xk)Sk)†ST
k

+O(α). (7)

This ensures function value improvement in Eq. (7) if α is
sufficiently small and H̃Sk

(xk) is positive definite. In fact,
we can ensure that positive definiteness of H̃Sk

(xk) follows
from α being small enough if we choose Sk appropriately.

Lemma 2. If STk Sk = I and ‖H̃Sk
(xk)− STk H(xk)Sk‖2 <

µ, then H̃Sk
(xk) � 0.



Based on this lemma, we set STk Sk = I to ensure that
H̃Sk

(xk) � 0. We also require E[SkS
T
k ] � 0 so that the

approximate sketching does not leave out any directions
throughout every iteration. This requirement can be easily
satisfied if s1,k, ..., sm,k are sampled from unit coordinate
directions without replacement.

4. THEORETICAL RESULTS

We now provide a complexity bound for ZO-RSN methods.

Theorem 1. Let the sketching matrix Sk ∈ Rn×m satisfy
STk Sk = I and ESk∼D[SkS

T
k ] � 0, and define G(x) =

ESk∼D[Sk(STk H(x)Sk)−1STk ],

ρ(x) = min
v∈Rn

vTH(x)
1
2G(x)H(x)

1
2 v

‖v‖22
and ρ = min

x∈Rn
ρ(x).

Given ε > 0 and δ ∈ (0, 1), consider the ZO-RSN method (6)
for Problem (1). If γ ≤ 1/L̂ and α ≤ 0.3µ/(mL2) is small
enough that

α(C1 + C2α)

ρµ̂γ − αC1 − α2C3
≤ δε and αC1 + α2C3 < ρµ̂γ,

then we can achieve E[f(xk)− f∗] ≤ ε after

k ≥
⌈

log

(
f(x0)− f∗

(1− δ)ε

)/
log

(
1

1− ρµ̂γ + αC1 + α2C3

)⌉
iterations where C1 = γ(

√
mL + B)/(2µ), C2 = γL2

1[m +√
m(1 + B)]/(2µ2), C3 = γL1[

√
mL1(1 + B) + B(2 +

B)]/(2µ2) and B = 10mL2/(3µ).

Theorem 1 establishes a global, linear convergence for the
ZO-RSN method toward an ε-accurate solution. The worst-
case iteration complexity can be upper bounded as

k ≥ dβ1 log ([f(x0)− f∗]/[(1− δ)ε])e . (8)

where β1 = 1/(ρµ̂γ − αC1 − α2C3). We can recover the
convergence complexity for the RSN method [14] if α and δ
approach zero. Furthermore, by choosing Sk properly, the it-
eration complexity for the ZO-RSN method in Eq. (8) can be
lower than the complexities for existing zeroth-order meth-
ods. We show this with the following corollary:

Corollary 4.1. Suppose all the conditions of Theorem 1 hold.
If the columns of Sk are chosen randomly without replace-
ment from a basis of orthonormal eigenvectors of H(xk),
step-size γ = 1/L̂, and α = (

√
C2

1/4 + (1− σ)ρµ̂γ −
C1/2)/C2 for some σ ∈ (0, 1), then ρ = m/n and hence to
achieve E[f(xk)− f∗] ≤ ε, we need

k ≥
⌈
(nL̂/[σmµ̂]) log ([f(x0)− f∗]/[(1− δ)ε])

⌉
. (9)

Corollary 4.1 shows that the iteration complexity of the
ZO-RSN methods depends on the subspace dimension m, the

problem dimension n and other parameters µ̂, L̂. Since the
ZO-RSN methods need m(m + 1)/2 function queries per it-
eration, we can obtain the total query complexity by multiply-
ing Eq. (9) with this factor.

Now, we compare the complexity bounds for the ZO-RSN
methods against the Hessian-aware zeroth-order method us-
ing the power iteration (ZOHA-PW) [12], which previously
has been compared favourably to the zeroth-order method in
[11]. Since the ZOHA-PW method also generates multiple
random directions, here m refers to the number of the gener-
ated directions. For µ-strongly convex problems, the iteration
complexity of ZOHA-PW is

k ≥
⌈
β2 log

(
[f(x0)− f∗]/[(1− δ̂)ε]

)⌉
, (10)

where β2 = 64(n+ 2)(µ+ 10λs+1)/(µm), λs+1 is an up-
per bound on the Hessian’s (s + 1)th largest eigenvalue and
δ̂ is a free parameter which is similar to δ in Eq. (9). Dis-
regarding the function evaluations required to implement the
power method, the total query complexity for ZOHA-PW is
2m times its iteration complexity. Consider the problem of
minimizing a quadratic function. Then, L̂ = µ̂ = 1. If δ,
δ̂ and m all are set to be equal for both methods, and also
σ = 0.5, then the speedup in iteration complexity from using
ZO-RSN instead of ZOHA-PW is

32 (1 + 2/n) (1 + 10λs+1/µ) .

ZO-RSN is thus faster than ZOHA-PW by more than two
orders of magnitude in iteration complexity, even for well-
conditioned problems (when λs+1/µ is close to one). If func-
tion queries can be performed efficiently in parallel, then ZO-
RSN has significantly lower run-time than ZOHA-PW. We
can also prove that the speedup in query complexity for ZO-
RSN compared to ZOHA-PW is

[128 (1 + 2/n) (1 + 10λs+1/µ)]/(m+ 1).

Thus, as long as m < 128 (1 + 10λs+1/µ) − 1, the query
complexity will be lower for ZO-RSN.

5. NUMERICAL EXPERIMENTS

We compare the performance of ZO-RSN against the existing
Hessian-aware zeroth methods called ZOHA-Gauss-DC [12]
that uses a descent-checking procedure to increase an attack
success rate, and approximates Hessian according to

H̃ = (2α2b)−1
b∑
i=1

|∆αui
f(x)−∆αui

f(x−αui)|uiuTi +λId,

where λ is a positive constant and u1, . . . , ub are the vec-
tors generated from the Gaussian distribution with zero mean
and unit variance. In particular, we evaluate both methods
on training un-targeted black box adversarial attacks over the
MNIST data set [19, 12]. These attacks are carried out against



the trained convolutional neural network (CNN) model de-
scribed in [12][Section 5.2]. For each example xnati in the
test set, the optimizer aims to generate an adversarial exam-
ple xi which differs from xnati by at most ε in `∞ norm, while
being classified differently with sufficient confidence. This is
done by minimizing the following function [19]:

f(x) = max

{
max
i 6=l

log[Z(x)]i − log[Z(x)]l,−ω
}
. (11)

Here, [Z(x)]i represents the probability of an input x belong-
ing to class i according to the trained neural network.

Since the problem is constrained and does not have guar-
antees for µ-strong convexity or L1-smoothness, we need to
modify the ZO-RSN algorithm. Firstly, we artificially en-
sure positive definiteness and boundedness of H̃Sk

(xk) by
applying the operator Π[λmin,λmax](·) that projects its eigen-
values onto an interval [λmin, λmax] to get a modified matrix
ĤSk

(xk). Secondly, we consider `∞-norm constraints by de-
termining λ̃k that solves the following minimization problem

minimize
λ∈Rm

f(xk) + γg̃Sk
(xk)Tλ+

γ

2
‖λ‖2

ĤSk
(xk)

subject to −γSkλ ≤ xk − xnati − 1ε

γSkλ ≤ 1ε+ xnati − xk.

(12)

This approach corresponds to using sequential quadratic
programming (SQP) for nonlinear problems with linear con-
straints, but with the step to the next iterate being restricted
to lie in a specific subspace. To solve the auxiliary prob-
lem (12) quickly with a standard cvxopt solver [20], we
generate Sk by choosing its columns to be unit coordinate
vectors. This enables us to formulate the problem with only
m constraints. This adapted ZO-RSN algorithm is called
ZO-RSN-SQP. Finally, we use the descent-checking tech-
nique corresponding to that for ZOHA-Gauss-DC. The full
description of ZO-RSN-SQP is given in Algorithm 1.

We trained the network model until its accuracy reached
98.84%, and also set α = 0.1, γ = 1,m = 3 and mmax =
20 for ZO-RSN-SQP and the same parameters for ZOHA-
Gauss-DC for the un-targeted black box attacks described in
[12]. In the experiments, we either ended a test run if the
algorithm managed to find a point with function value at ω =
−1, or if the algorithm called queried the neural network for
a prediction 50000 times. We labelled the former result as a
success and the latter result as a failure.

The results of our black box attack experiments were sum-
marized in Table 1. Firstly, ZO-RSN-SQP has a more stable
performance than ZOHA-Gauss-DC. Even though both algo-
rithms implement the same decent checking technique, only
ZO-RSN-SQP succeeds in the attacks for all cases. Secondly,
the mean number of queries for ZO-RSN-SQP is lower than
that for ZOHA-Gauss-DC. This results from a minority of
the problems, where ZOHA-Gauss-DC requires a large num-
ber of queries to solve. In contrast, ZOHA-Gauss-DC has a
lower median value than ZO-RSN-SQP. As ZO-RSN requires

Algorithm 1 ZO-RSN-SQP for black-box attack
Initialize x0 ← xnati , α, γ,m,mmax
for k = 0, 1, ..., kmax do

Generate Sk = [s1,k, ..., sm,k]

Compute g̃Sk
and H̃Sk

ĤSk
← Π[λmin,λmax](H̃Sk

)

λ̃k ← Solution to (12) with ĤSk
(xk) and g̃Sk

(xk)

xtrial ← xk + Skλ̃k
while f(xtrial) ≥ f(xk) and m̄ < mmax do

m̄← m̄+ 1
Generate sm̄,k such that [Sk, sm̄,k]T [Sk, sm̄,k] = I
Sk ← [s1,k, ..., sm̄,k]
[g̃Sk

(xk)]m̄ ← ∆αsi,kf(xk)/α
for j = 1, 2, ..., m̄ do

[H̃Sk
(xk)]m̄,j ← ∆αsi,k∆αsj,kf(xk)/α2

[H̃Sk
(xk)]j,m̄ ← [H̃Sk

(xk)]m̄,j
end for
ĤSk

← Π[λmin,λmax](H̃Sk
)

λ̃k ← Solution to (12) with ĤSk
(xk) and g̃Sk

(xk)

xtrial ← xk + γSkλ̃k
end while
if f(xtrial) ≤ f(xk) then

xk+1 ← xtrial
else

xk+1 ← xk
end if

end for

Algorithm ZO-RSN-SQP ZOHA-Gauss-DC
Success rate (%) 100 95.33
Median queries 2336 815
Mean queries 2510 4164
Max queries 8239 50000
fest2000 − f∗ 1.94 3.70 · 10−1

fest4000 − f∗ 1.89 · 10−1 1.86 · 10−1

fest6000 − f∗ 2.42 · 10−2 1.47 · 10−1

Table 1. Comparison of `∞ norm based black-box attacks on
a CNN model trained on the MNIST data.

more function queries per iteration and subspace dimension
than ZOHA-Gauss-DC, one can hypothesize this extra effort
is worthwhile mainly for the harder-to-attack test examples.

To investigate the speed of convergence, we also ran a
separate experiment where we made estimates of the average
objective value after 2000, 4000 and 6000 queries, fest2000,
fest4000 , fest6000, using the first 100 MNIST examples. The
suboptimalities based on these results are also shown in Ta-
ble 1. As we can see, ZOHA-Gauss-DC is initially faster, but
ZO-RSN-SQP becomes more accurate towards the end.

6. CONCLUSIONS

We have proposed the ZO-RSN method, a Hessian-based
zeroth-order method that approximates sketched gradients
and Hessians by finite differences. Our results display a
lower iteration complexity of the ZO-RSN method than exist-



ing zeroth-order methods for strongly convex problems. The
experiments with un-targeted adversarial attacks on a CNN
model illustrate that the modified ZO-RSN method named
ZO-RSN-SQP attains an overall competitive performance
and a higher stability, compared to ZOHA-Gauss-DC.
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A. PROOF OF LEMMA 1

If γ ≤ 1/L̂, then from Eq. (2) with x = xk+1, y = xk

f(xk+1) ≤ f(xk)+g(xk)T (xk+1−xk)+
1

2γ
‖xk+1−xk‖2H(xk).

(13)
Utilizing the updates from Eq. (4) that xk+1 − xk = γSkλk
and λk = −(STk HkSk)†STk g(xk), we complete the proof.

B. PROOF OF LEMMA 2

If STk Sk = I and also v ∈ Rm has norm 1, then µ ≤
vTSTk H(xk)Skvk. This condition implies that STk H(xk)Sk
is positive definite and its lowest eigenvalue is bounded by
µ. Then, H̃Sk

(xk) � 0 iff H̃Sk
(xk)(STk H(xk)Sk)−1 � 0.

Since

H̃Sk
(xk)(STk H(xk)Sk)−1

= I + (H̃Sk
(xk)− STk H(xk)Sk)(STk H(xk)Sk)−1,

positive definiteness of H̃Sk
(xk) is ensured if

‖(H̃Sk
(xk)− STk H(xk)Sk)(STk H(xk)Sk)−1‖2 < 1. (14)

Since

‖(H̃Sk
(xk)− STk H(xk)Sk)(STk H(xk)Sk)−1‖2

≤ ‖H̃Sk
(xk)− STk H(xk)Sk‖2‖(STk H(xk)Sk)−1‖2

≤ ‖H̃Sk
(xk)− STk H(xk)Sk‖2/µ,

a sufficient condition ensuring that Eq. (14) holds is

‖(H̃Sk
(xk)− STk H(xk)Sk)‖2 < µ.

C. LEMMA 3

To facilitate the analysis, we establish key error bounds due
to finite difference estimations.

Lemma 3. Consider the ZO-RSN method (6) for solving
Problem (1). Let ek = g̃Sk

(xk) − STk g(xk) and Ek =

H̃Sk
(xk)− STk H(xk)Sk. Then,

‖ek‖2 ≤
√
mαL1/2, and ‖Ek‖2 ≤ 5mαL2/3.

Proof. Define ek = g̃Sk
(xk)−STk g(xk) andEk = H̃Sk

(xk)−
STk H(xk)Sk. To prove the upper-bound for ‖ek‖2, consider
the first-order Taylor expansion of f(xk + αsi,k) with the
error term on Lagrange form: For θ ∈ [0, 1]

f(xk + αsi,k)

= f(xk) + αg(xk)T si,k +
α2

2
sTi,k∇2H(xk + θαsi,k)si,k.



Therefore,∣∣∆αsi,kf(xk)/α− g(xk)T si,k
∣∣ =

α

2

∣∣sTi,kH(xk + θαsi,k)si,k
∣∣

≤ αL1

2
,

which implies a bound for each component of ek. We can
conclude that ‖ek‖2 ≤

√
mαL1/2.

Next, denote the third derivative tensor of f(x) by f ′′′(x),
where

[f ′′′(x)]ijk =
∂

∂[x]i

∂

∂[x]j

∂

∂[x]k
f(x).

For u, v, w ∈ Rd, let

f ′′′(x)[u][v][w] =

n∑
i=1

n∑
j=1

n∑
k=1

[f ′′′(x)]ijk[u]i[v]j [w]k.

The second-order Taylor expansion of f(xk + αu) is

f(xk + αu) = f(xk) + αg(xk)Tu+
α2

2
uTH(xk)u

+
α3

6
f ′′′(xk + θαu)[u][u][u], θ ∈ [0, 1].

TheL2-Lipschitz continuity assumption onH(x) implies that
f ′′′(x)[u][v][w] is bounded by L2‖u‖2‖v‖2‖w‖2. Thus, for
θ1, θ2, θ3 ∈ [0, 1]∣∣∆αsi,k∆αsj,kf(xk)/α2 − sTi,kH(xk)sj,k

∣∣
=
α

6
|f ′′′(c1k)[si,k + sj,k][si,k + sj,k][si,k + sj,k]

− f ′′′(c2k)[si,k][si,k][si,k]− f ′′′(c3k)[sj,k][sj,k][sj,k]|

≤ 5

3
αL2,

where c1k = xk + θ1α(si,k + sj,k), c2k = xk + θ2αsi,k and
c3k = xk+θ3αsj,k. This gives a bound on each component of
Ek. To finish the analysis, we invoke the following theorem:

Theorem 2 (Geršgorin theorem, [21]). Let A = [aij ] ∈
Mn and let R′i(A) =

∑
j 6=i |aij |, i ∈ {1, ..., n} denote the

deleted absolute row sums of A. Consider the n Geršgorin
discs {z ∈ C : |z − ai| ≤ R′i(A)}. The eigenvalues of A are
in the union of the Geršgorin discs.

Finally, by applying Theorem 2 on ETk Ek, we have
ρ(ETk Ek) ≤ (25/9)L2

2m
2α2. We can hence conclude that

‖Ek‖2 =
√
ρ(ETk Ek) ≤ (5/3)L2mα.

D. PROOF OF THEOREM 1

The RSN method chooses xk+1 by minimizing the right hand
side of (13) with respect to x and subject to the condition that
x − xk is a linear combination of the columns of Sk. This

constraint can directly be taken into account by the following
change of variables to an m-dimensional variable vector λ:

x = xk + γSkλ.

Denote Tk(λ) as the upper bound of (13), i.e.

Tk(λ) = f(xk) + γg(xk)TSkλ+
γ

2
‖λ‖2ST

k H(xk)Sk
.

Here, λk = −(STk HkSk)†STk g(xk) from Eq. (4) is the λ
minimizing Tk(λ).

Since the ZO-RSN method only accesses approximations
of the sketched gradient and Hessian g̃Sk

(xk) and H̃Sk
(xk),

it tries to minimize T̃k(λ), where

T̃k(λ) = f(xk) + γg̃Sk
(xk)Tλ+

γ

2
‖λ‖2

H̃Sk
(xk)

. (15)

Let λ̃k be the minimizer of T̃k(λ). By setting xk+1 = xk +
γSTk λ̃k, we get

f(xk+1) ≤ T (λ̃k) = T (λk) + T (λ̃k)− T (λk)

= f(xk)− γ

2
‖g(xk)‖2Sk(ST

k H(xk)Sk)†ST
k

+ γg(xk)TSk(λ̃k − λk)

+
γ

2
(‖λ̃k‖2ST

k H(xk)Sk
− ‖λk‖2ST

k H(xk)Sk
)

= f(xk)− γ

2
‖g(xk)‖2Sk(ST

k H(xk)Sk)−1ST
k

+ γg(xk)TSk(λ̃k − λk)

+
γ

2
(λ̃k + λk)TSTk H(xk)Sk(λ̃k − λk).

(16)

To complete the proof, we need to determine upper-bounds
for ‖λk‖2, ‖λ̃k − λk‖2 and ‖λk + λ̃k‖2. We first prove the
upper-bound for ‖λk‖2. Since f(x) is L1-smooth and µ-
strongly convex, µI � STk H(xk)Sk � L1I . By the fact
that STk H(xk)Skλk = −STk g(xk),

‖λk‖2 = ‖(STk H(xk)Sk)−1STk g(xk)‖2 ≤ ‖g(xk)‖2/µ.
(17)

We next find the upper-bound for ‖λ̃k − λk‖2. Define ek =
g̃Sk

(xk) − STk g(xk) and Ek = H̃Sk
(xk) − STk H(xk)Sk. If

α ≤ 3µ/(10L2m), then ‖Ek‖2‖(STk H(xk)Sk)−1‖2 ≤ 1/2.
We can then use the following lemma:

Lemma 4 ([21]). LetA ∈Mn be non-singular with condition
number κ(A), let b,∆b ∈ Rn and let ∆A ∈Mn be such that
‖A−1‖2‖∆A‖2 < 1. If x = A−1b, there exits a ∆x such that

(A+ ∆A)(x+ ∆x) = b+ ∆b,

and

‖∆x‖2 ≤
‖A−1‖2

1− κ(A)‖∆A‖2‖A‖2

(‖∆b‖2 + ‖∆A‖2‖x‖2),



By Lemma 4, and by the fact that

κ(STk H(xk)Sk)/‖STk H(xk)Sk‖2 = ‖(STk H(xk)Sk)−1‖2,

we have

‖λ̃k − λk‖2

≤ ‖(STk H(xk)Sk)−1‖2
1− κ(STk H(xk)Sk) ‖Ek‖2

‖ST
k H(xk)Sk‖2

(‖ek‖2 + ‖Ek‖2‖λk‖2)

≤ 1

µ
(
√
mL1 +

10

3
mL2‖λk‖2)α

≤ 1

µ
(
√
mL1 +m

10L2

3µ
‖g(xk)‖2)α.

(18)
We finally can prove the upper-bound for ‖λk + λ̃k‖2:

‖λk + λ̃k‖2 ≤ 2‖λk‖2 + ‖λ̃k − λk‖2

≤ 1

µ

(√
mL1 +

(
2 +m

10L2

3µ

)
‖g(xk)‖2

)
α.

(19)

Next, plugging in inequalities (17), (18) and (19) into (16),
and then using the fact that ‖g(xk)‖2 ≤ (1 + ‖g(xk)‖22)/2

f(xk+1) ≤ f(xk)− γ

2
‖g(xk)‖2Sk(ST

k H(xk)Sk)−1ST
k

+ α(C1 + C2α+ ‖g(xk)‖22(C1 + C3, α))
(20)

where C1 = γ(
√
mL + B)/(2µ), C2 = γL2

1[m +
√
m(1 +

B)]/(2µ2), C3 = γL1[
√
mL1(1 + B) + B(2 + B)]/(2µ2)

and B = 10mL2/(3µ). Taking the expectation with respect
to xk on both sides of Inequality (20), we have

E[f(xk+1)|xk] ≤ f(xk)− γ

2
‖g(xk)‖2G(xk)

+ α(C1 + C2α+ ‖g(xk)‖22(C1 + C3α)),
(21)

where G(x) = ESk∼D[Sk(STk H(x)Sk)−1STk ].
To prove the linear convergence of the ZO-RSN method

from Eq. (21), we need to bound ‖g(xk)‖22 and ‖g(xk)‖2G(xk).
We first prove the upper bound for ‖g(xk)‖2 by the L1-
smoothness assumption of f(x), i.e.

f(x) ≤ f(y) + g(y)T (x− y) +
L1

2
‖x− y‖22.

Setting y = xk and minimizing both sides with respect to x
separately results in

‖g(xk)‖22 ≤ 2L1(f(xk)− f∗). (22)

We next show the lower bound for ‖g(xk)‖2G(xk). If H(xk) is
non-singular, then

‖g(xk)‖2G(xk) = ‖H(xk)
1
2H(xk)−

1
2 g(xk)‖2G(xk)

≥ ρ‖g(xk)‖2H(xk)−1 .

Setting y = xk in (3) and minimizing both sides of the equa-
tion with respect to x separately gives

f∗ ≥ f(xk)− 1

2µ̂
‖g(xk)‖2H(xk)−1 .

Therefore,

2ρµ̂(f(xk)− f∗) ≤ ρ‖g(xk)‖2H(xk)−1 ≤ ‖g(xk)‖2G(xk).
(23)

Next, by plugging (22) and (23) into (21), then by subtracting
f∗ from both sides of the inequality, and after that by taking
the total expectation, we get

Vk+1 ≤ [1− ρµ̂γ + α(C1 + αC3)]Vk + α(C1 + C2α).

where Vk = E[f(xk)− f∗].
If α satisfies αC1 + α2C3 < ρµ̂γ, then by applying

the inequality recursively and by using the fact
∑k−1
l=0 β

l ≤∑∞
l=0 β

l = 1/(1− β) for β ∈ (0, 1)

Vk ≤ (1− ρµ̂γ+α(C1 +αC3))kV0 +
α(C1 + C2α)

ρµ̂γ − αC1 − α2C3
.

(24)
If α also satisfies

α(C1 + C2α)

ρµ̂γ − αC1 − α2C3
≤ δε, (25)

where δ ∈ (0, 1) and ε is an expected sub-optimality, then the
lower bound on the number of iterations follows.

E. PROOF OF COROLLARY 4.1

To prove the result, we need to quantify ρ. This can be done
by using the following lemma:

Lemma 5. [14] If for all xk ∈ Rn it holds with probability 1
thatNull(STk H(xk)Sk) = Null(Sk) andRange(H(xk)) ⊂
Range(ESk∼D[STk Sk]), then ρ(xk) = λ+

min(ESk∼D[P̂ (xk)])
which is positive, where

P̂ (xk) := H1/2(xk)Sk(STk H(xk)Sk)†STk H
1/2(xk). (26)

From this lemma, we can quantify ρ by considering the
cases when the columns of Sk are chosen randomly with-
out replacement from a basis of orthonormal eigenvectors of
H(xk). Let Λ̃Sk

be an m ×m diagonal matrix such that the
eigenvalue corresponding to column i of Sk is the ith element
on the diagonal of Λ̃Sk

and let its square root be Λ̃
1
2

Sk
. Then,

P̂ (xk) = H1/2(xk)Sk(STk H(xk)Sk)−1STk H
1/2(xk)

= SkΛ̃
1
2

Sk
(Λ̃

1
2

Sk
STk SkΛ̃

1
2

Sk
)−1Λ̃

1
2

Sk
STk = SkS

T
k .

The eigenvectors of all realizations of P̂ (xk) are the eigen-
vectors of H(xk), with eigenvalues 1 for each vector that is



among the columns of Sk and eigenvalues 0 for the other vec-
tors. Therefore, the orthonormal eigenvectors of H(xk) are
also the eigenvectors of ESk∼D[P̂ (xk)]. Since the probabil-
ity that this eigenvector is among the columns of Sk is m/n,
vTESk∼D[P̂ (xk)]v = m/n for any eigenvector v. Thus, we
can prove that ρ = m/n.

From Theorem 1, the iteration complexity bound can be
approximated in Eq.(8). If we choose γ = 1/L̂ and some σ ∈
(0, 1) such that α = (

√
C2

1/4 + (1− σ)ρµ̂γ − C1/2)/C2,
then

ρµ̂γ − αC1 − α2C3 = σmµ̂/(nL̂).

Plugging this expression into Eq.(8), we complete the proof.
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