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ABSTRACT

The latest research in the field of voice anti-spoofing
(VAS) shows that deep neural networks (DNN) outperform
classic approaches like GMM in the task of presentation
attack detection. However, DNNs require a lot of data to
converge, and still lack generalization ability. In order to
foster the progress of neural network systems, we introduce a
Large Replay Parallel Dataset (LRPD) aimed for a detection
of replay attacks. LRPD contains more than 1M utterances
collected by 19 recording devices in 17 various environments.
We also provide an example training pipeline in PyTorch [1]
and a baseline system, that achieves 0.28% Equal Error Rate
(EER) on evaluation subset of LRPD and 11.91% EER on
publicly available ASVpoof 2017 [2] eval set. These results
show that model trained with LRPD dataset has a consistent
performance on the fully unknown conditions. Our dataset is
free for research purposes and hosted on GDrive[H Baseline
code and pre-trained models are available at GitHutﬂ

Index Terms— Automatic speaker verification, Voice
Anti-Spoofing, Physical access, Replay, Dataset

1. INTRODUCTION

Over the last years a lot of work has been done in the voice
biometrics field. Recent speaker recognition systems are able
to successfully recognize person using the voice over various
conditions. Such progress allows to build reliable voice-based
solutions for person authentication. However, it is usually
assumed that biometrics systems are vulnerable to spoofing
attacks, also known as presentation attacks. For the best of
our knowledge, there are two main types of spoofing attacks,
logical and physical access attacks.

Logical access (LA) attach comprised two different
approaches based on speech synthesis systems. Text-to-
speech (TTS) systems are used to generate a fully artificial
speech based on the specified text, while the voice conversion
(VC) systems use a speech of one person as an input and
convert it into the speech that resembles the voice of another
person.

Ihttps://drive.google.com/drive/folders/
11HxQ5tPcobF1N8xv_x71fDOhU2SEsOU9?usp=sharing
“https://github.com/IDRnD/lrpd-paper—code

Physical access (PA) attacks are also known as Replay
attacks, and are performed in the following way: the bona
fide speech of the target speaker is recorded first, and then
it is being presented to the speaker recognition system by a
playback using the mobile phone or speaker. In this paper we
focus on the problem of physical attacks, due to the ease of
implementation and a high difficulty of detection.

There are multiple publicly available datasets for training
presentation attack detection systems. The most widespread
datasets are related to ASVspoof challenges, that made a
huge contribution to the VAS research. The first challenge,
ASVspoof 2015 [3], was focused on the Logical access
attacks detection. The second challenge, ASVspoof 2017,
was focused on the physical access attacks detection. The
ASVspoof 2019 [4] challenge aimed to consider both types
of presentation attacks. AVspoof [5] is a public audio
spoofing database which includes 10 various spoofing threats
generated using replay, TTS and VC systems. VoicePA [6]
is an extension of the AVspoof database, which includes
presentation attacks recorded in different environments with
various recording and playback devices. PHONESPOOF
[7] is a database that was collected in the telephone channel
domain and is used to investigate the robustness of anti-
spoofing systems in the telephone channel conditions.

The specific issue associated with replayed databases, is
that they tend to become outdated over the time. The main
difference between bona fide and replayed speech is a small
distortion of source signal, caused by both recording and
playback devices, which is likely to be used by anti-spoofing
system to discriminate. Thus, even robust replay detection
system may be vulnerable to the hardware or software speech
preprocessing algorithms of new smartphones, which are
being updated at least annually. We believe, that LRPD
dataset, containing recent smartphones, with its wide covering
of recording environments, is going to be very handful for the
further development of replay detection systems.

In Section 2 of this paper we present the LRPD dataset.
Section 3 describes experiments conducted on the LRPD
and ASVspoof 2017 datasets. And finally, Sections 4 and 5
contain analysis of experiments’ results and conclusions on
our work.
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https://drive.google.com/drive/folders/1lHxQ5tPco5F1N8xv_x7lfDOhU2SEsOU9?usp=sharing
https://github.com/IDRnD/lrpd-paper-code

Table 1. Source datasets

Train part Eval part
Dataset name Spks Utts  Spks  Utts
VCTK - - 107 1172
LibriSpeech 1252 16724 - -
MCV 22403 26225 427 427
GLR 250 23377 176 6490
CN-Celeb 1002 6307 - -
Total files 72633 8089
Total size, Gb 22.5 2.4
Total duration, hours 209.5 22.1

2. DATASET DESCRIPTION

The LRPD corpus was collected and open-sourced to push the
boundaries of current research in the field of Replay spoofing
attacks detection. The distinctive feature of LRPD dataset is
that it contains several copies of replayed audio recorded by
different devices at the same time in parallel.

2.1. Audio sources

The LRPD dataset contains both bona fide and replayed
types of utterances. Bona fide speech was taken from VCTK
[8], LibriSpeech [9]], Mozilla Common Voices (MCV) [10]],
Google Language Resources (GLR) [11]], and CN-Celeb [12]
datasets. For each dataset we randomly sampled a subset
of files to use. The resulting number of speakers and files
selected for the replaying is shown in Table

2.2. Collection session

Large replay parallel dataset is made of many recording
sessions. One session consists of sampling a subset of data
from the source datasets, selecting one playback device,
multiple recording devices and pinning one environment.

2.2.1. Session data

For each session we randomly picked the subset of the source
data, about 4-8 hours long. All selected files were merged
into one big file that was played by a playback device. After
finishing recording, we applied a step to
cut the audio back and map the recorded utterances to their
original metadata.

2.2.2. Session devices

We used different configurations of playback and recording
devices to collect the database. 19 recording and 11 playback
devices were used in total (see Table [2] and Table 3). For
each session we picked one playback and multiple recording
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Fig. 1. Schema of a stand

devices. The recording was carried out using standard
10S/Android audio recording API.

2.2.3. Session environment

There are total 17 unique recording environments in LRPD
dataset. They include 25 sessions from an anechoic room with
a stochastic noise (caused by air conditioning system), and up
to 8 sessions for the rest of 16 environments each. These 16
environments represent the rooms and apartments of different
sizes, and we also provide 8 labels of known apartments in
the dataset. For the data where it was impossible to recover
the apartment id we just set the label unknown and this is
a mix of recordings from the rest 8 environments. For all
the environments recording distance varied from 8 to 100 cm
and it was pinned for each session and was similar for every
device in that session.

2.3. Collection stand

The collection stand was based on a laptop, Wi-Fi router,
playback device and multiple recording devices. Playback
device was connected to the laptop, and all the devices were
connected to a power supply. Stand’s schema is shown on

Figure [T}

2.4. Post-processing dataset

After collecting the data, we cut audio according to saved
playback metadata. To double-check the quality of dataset
we applied a cross-correlation function to the original file and
its replayed copy.

2.5. Dataset statistics

Aggregated LRPD statistics and distributions across various
playback devices (Table [2), recording devices (Table [3)),



Table 2. Playback device statistic

Table 3. Record device statistic

Ratio, %
Playback trn aparts  trn office  val aparts
srs xb12 20.95 19.87 20.84
ginzzu gm 877b 18.85 9.05 18.82
lg pj2b 14.53 24.42 14.64
jbl go3 13.28 5.71 13.31
jbl flip4 12.26 11.92 12.37
oklick ok-128 11.08 9.32 10.87
sharp 6.70 0 6.59
defender enjoy s500 2.34 0 2.56
sps 609 0 6.08 0
digma s16 0 5.67 0
jbl clip3 0 7.98 0
Total files 469908 566832 195997
Total size, Gb 95.7 125.6 27.0
Total duration, hours 891.6 1170.6 251.8

source data (Table[d) and recording environments are presented
in corresponding tables.

2.6. Dataset partitions

We split LRPD into 3 parts: noised-train (trn_office),
clean-train (trn_aparts) and test (val_aparts). Noised
train set contains files collected in an anechoic room. Clean
train and test sets represent the rest 16 environments from
Section

Metadata is currently included into dataset structure, and
for information please check README file in dataset root.

3. EXPERIMENTS

3.1. Description

We conducted experiments for two different tasks:

Task 1. Replay detection: binary classification of spoof
/ human. The goal of these experiments was to
measure impact of adding new LRPD data for
replay detection problem.

Task 2. Recording / Playback device classification (Device
detection): two multi-label classification problems.
Using the models obtained from device detector
training we were able to explore embedding space
using T-distributed Stochastic Neighbor Embedding
(t-SNE) to visualize a distribution of 2-D embeddings
on ASVspoof2017 eval subset.

For more information on architectures, data setup, and
training hyperparameters please refer to the baseline training
pipeline.

Ratio, %
Record trn aparts  trn office  val aparts
huawei matepad pro 13.12 0 13.14
huawei mate 40 pro 13.11 0 13.13
huawei mate 30 pro 13.01 0 13.01
huawei p smart z 8.66 4.59 8.64
honor 10x lite 4.44 4.56 4.46
honor 30 pro+ 0 1.27 0
iphone 7 4.19 3.06 4.24
iphone 8 7.85 0 7.8
iphone 11 pro 0 9.18 0
iphone 11 pro max 4.51 9.18 4.54
iphone 12 pro max 0 9.66 0
iphone xr 7.72 8.47 7.62
samsung galaxy a0l 0 7.9 0
samsung galaxy a51 0 4.85 0
samsung galaxy m21 6.82 3.12 6.81
samsung galaxy s8+ 8.43 10.37 8.4
samsung galaxy s20+ 3.9 9.98 3.94
zte blade v2020 4.23 5.2 4.26
sony xperia zx3 0 8.6 0
Total files 469908 566832 195997
Total size, Gb 95.7 125.6 27.0
Total duration, hours 891.6 1170.6 251.8

3.2. Datasets

For the replay detection task, we used different combination
of LRPD and ASVspoof 2017:

1. LRPD all train (office + aparts) + ASVspoof 2017 train
2. LRPD all train (office + aparts)
3. ASVspoof 2017 train

For the device detection task, we used LRPD all train
(office + aparts) for training and LRPD eval for evaluation.

3.3. Architecture

We have chosen RawNet architecture [13] as a feature
extractor model for both tasks, as we found it most suitable
for detection of replay attacks. We have slightly changed
initial RawNet architecture by replacing Gated recurrent unit
(GRU) pooling with Statistical pooling layer and reducing
model size using depth multiplier equals to 0.625. For each
task we used different Fully Connected (FC) classifier head
setup.

3.4. Training setup

For both tasks we used Adam optimizer with the following
learning rate (Ir) schedule: constant value of Ir [1e3, 5¢*,



Table 4.

Source dataset statistic

Ratio, %
Source trn aparts  trn office  val aparts
MCV 36.3 29.4 16.68
GLR 32 30.47 39.43
LibriSpeech 24.54 22.52 0
CN-Celeb 7.15 17.61 0
VCTK 0 0 43.89
Total files 469908 566832 195997
Total size, Gb 95.7 125.6 27.0
Total duration, hours 891.6 1170.6 251.8

Table 5. Results on replay detection task.

EER, %
Datasets used LRPD ASV17 ASV17
eval eval dev
LRPD all train 0.16 17.18 27.84
ASV17 trn 21.70 13.94 17.54
LRPD all train + ASV17trn  0.28 11.91 18.63

le*, 5¢7] was dropped down after each 4 epochs, and we
trained each model for 16 epochs in total. When training
Task 1 models we sampled even number of utterances per
class (replay/human) and even number of utterances from
each dataset, forming batches of size 64. While for the Task
2 we sampled 4 replayed utterances with the same source
utterance and cut them so they maintain aligned resulting in
4 x 32 batch size for Task 2.

Cross-entropy (CE) loss was used for both tasks, except
that for Task 2 device detection we summed up CE losses
from two simultaneous tasks: playback device classification
and recording device classification:

Edevicefdetection = ‘Cplayback + ‘Crecording

We augmented training data using noises from MUSAN
[14], DCASE [13]] and DEMAND [16] datasets. One random
noise was added on-the-fly to each utterance with 0.5 probability
and a random SNR uniformly sampled from 3-15 dB range.

4. RESULTS

4.1. Task 1. Replay detection

The testing results of replay detector on the LRPD eval,
ASVspoofl7 eval and ASVspoof17 dev datasets are presented
in Table[5] Adding LRPD data in training set may results in
increasing of VAS system accuracy even on out-of-domain
tests, such as ASVspoofl7 eval, where EER drops from
13.94% to 11.91%.

Fig. 2. Device detector embedding space on ASVSpoof
2017 eval. RO1-R25 stands for recording device ids in spoof
utterances, and genuine class is bonafide.

4.2. Task 2. Device detection

t-SNE Visualisation of the device detector embeddings is
presented on the Figl] Device detector was trained with
LRPD train subset only, and visualized embeddings are
extracted from out-of-domain ASVSpoof17 eval subset, for
which recording and playback device meta information is
given. We got 12.9% EER on ASVSpoof17 eval subset (all
with all protocol) for recording/playback pair classification
task, using embeddings.

5. CONCLUSIONS

In this paper we presented the LRPD dataset, that was
collected to advance future research on replay detection
task. Compared with previous open-source datasets, the new
corpus is larger, covers up-to-date recording and playback
devices and contains more source data variety (speakers,
languages). Using evaluations with the proposed data set, we
found that the error of the baseline RawNet model drops by
relative 15% on target ASVSpoof2017 eval set, when trained
with ASVSpoof2017 train and LRPD all train. We hope that
proposed data will fuel further research in voice biometrics
field by building more robust and protected systems.
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