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ABSTRACT
In end-to-end automatic speech recognition (ASR), a model is ex-
pected to implicitly learn representations suitable for recognizing a
word-level sequence. However, the huge abstraction gap between in-
put acoustic signals and output linguistic tokens makes it challeng-
ing for a model to learn the representations. In this work, to pro-
mote the word-level representation learning in end-to-end ASR, we
propose a hierarchical conditional model that is based on connec-
tionist temporal classification (CTC). Our model is trained by auxil-
iary CTC losses applied to intermediate layers, where the vocabulary
size of each target subword sequence is gradually increased as the
layer becomes close to the word-level output. Here, we make each
level of sequence prediction explicitly conditioned on the previous
sequences predicted at lower levels. With the proposed approach,
we expect the proposed model to learn the word-level representa-
tions effectively by exploiting a hierarchy of linguistic structures.
Experimental results on LibriSpeech-{100h, 960h} and TEDLIUM2
demonstrate that the proposed model improves over a standard CTC-
based model and other competitive models from prior work. We fur-
ther analyze the results to confirm the effectiveness of the intended
representation learning with our model.

Index Terms— hierarchical conditional model, connectionist
temporal classification, acoustic-to-word, end-to-end ASR

1. INTRODUCTION
End-to-end automatic speech recognition (ASR) aims to model di-
rect speech-to-text conversion [1–3], which substantially simplifies
the training and inference processes without external knowledge
(e.g., a pronunciation lexicon). With well-established sequence-to-
sequence modeling techniques [4–7] and more sophisticated neural
network architectures [8–10], end-to-end ASR models have shown
promising performance on various benchmarks [11–13].

Contrary to carefully designed feature extraction in the tradi-
tional pipeline framework, end-to-end models are generally expected
to implicitly learn representations suitable for solving a specific task.
For example, the learned representations have been shown to repre-
sent shape features for image classification [14] and syntactic struc-
tures for language modeling [15]. However, in ASR, it can be more
challenging for an end-to-end model to learn representations auto-
matically. Having no access to segmentation or alignment informa-
tion, end-to-end ASR models are required to predict word-level lin-
guistic tokens from frame-level acoustic signals. This input-output
gap in the level of abstraction makes it difficult to optimize end-to-
end ASR, unless a large amount of data or a strong language model
is accessible during training or inference [16, 17].

To promote word-level representation learning in end-to-end
ASR, we believe that a model should be trained to gradually in-
crease the abstraction level of linguistic information, as it has long
been considered reasonable for recognizing speech (i.e., speech →
phonemes → words → text) [18]. By exploiting lower levels of
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Fig. 1. Proposed hierarchical conditional model of end-to-end ASR.

abstractions to conditionally compose the higher-level linguistic
information, an end-to-end ASR model should be able to handle the
sparsity problem of words [19] and extract effective representations.

To achieve such progressive representation learning for ASR, we
propose hierarchical conditional modeling of end-to-end ASR (Fig-
ure 1). Our model consists of multiple connectionist temporal clas-
sification (CTC) [4] losses hierarchically applied to the intermediate
and last layers, inspired by previous studies [20–26]. Each loss cal-
culation targets sequences with a different granularity of linguistic
information: sequences with lower abstraction levels are predicted
from the intermediate layers, and a word-level sequence is predicted
from the last layer. Specifically, we focus on subwords (n-gram char-
acters) and increase the vocabulary size to word-level as the model
layer becomes close to the output (e.g., 256 → 2k → 16k). In ad-
dition to this hierarchical structure, we design the model to predict
each sequence at an abstraction level by explicitly conditioning on
the previously predicted sequences at lower levels, which is crucial
for maintaining subwords attributed to composing the higher-level
sequence. The proposed model should capture a hierarchy of linguis-
tic structures and yield representations suitable for modeling words.

The key contributions of this work are summarized as follows.
1) We show that the proposed approach enables a CTC-based sys-
tem to learn accurate word-level ASR, mitigating the data-sparsity
issue by gradually increasing the abstraction level of intermediate
predictions. 2) Based on experiments conducted on LibriSpeech
and TEDLIUM2, we demonstrate the effectiveness of our model
independently of variations in the amount of data and speaking
styles. All the implementations are made publicly available on our
ESPnet fork (https://github.com/YosukeHiguchi/espnet/
tree/hierctc). 3) We carefully compare our model with other
CTC-based models and further analyze the results, which provides
in-depth insights into the advantage of the proposed modeling.
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2. HIERARCHICAL CONDITIONAL END-TO-END ASR

2.1. Baseline architecture of end-to-end ASR

End-to-end ASR is formulated as a sequence-mapping problem be-
tween a T -length input sequence X=(xt ∈ RD|t=1, . . . , T ) and
L-length output sequence Y = (yl ∈ V|l = 1, . . . , L). Here, xt is
a D-dimensional acoustic feature at frame t, yl is an output token
at position l, and V is a vocabulary. As a baseline, we focus on a
Transformer-based model [27] optimized by CTC [4] with interme-
diate loss calculation [25, 26].
Transformer encoder: For encoding an audio sequence X into
latent representations, we construct the Transformer encoder [27]
consisting of a stack of E self-attention layers. The i-th layer out-
puts a sequence of dmodel-dimensional latent representations X(i)=

(x
(i)
t ∈ Rdmodel |t = 1, ..., T ) as

X̃(i) = X(i−1) + SelfAttention(X(i−1)), (1)

X(i) = X̃(i) + FeedForward(X̃(i)), (2)

where i∈{1, ..., E}, and X(0) is obtained by adding positional en-
codings to X . In Eqs. (1) and (2), layer normalization is applied
to each input of the self-attention mechanism SelfAttention(·) and
feedforward network FeedForward(·). We also train a model with
the Conformer encoder [9], which introduces a convolution neural
network (CNN) into the Transformer encoder, i.e., a convolution
module is added between Eqs. (1) and (2).
Connectionist temporal classification: CTC [4] optimizes the
model to predict a monotonic alignment between the encoded input
X(E) and output Y . To align the sequences in frame-level, the
output sequence Y is augmented with a unique blank token ε, which
results in a latent token sequence Z = (zt ∈ V∪{ε}|t = 1, . . . , T ).
On the basis of the conditional independence assumption per
token-frame prediction, CTC models the conditional probability
Pctc(Y |X(E)) by marginalizing over latent token sequences as

Pctc(Y |X(E)) ≈
∑

Z∈B−1(Y )

T∏
t=1

P (zt|X(E)), (3)

where B−1(Y ) returns all possible latent sequences compatible with
Y . The CTC loss is defined as the negative log-likelihood of Eq. (3):

Lctc(Y |X(E)) = − logPctc(Y |X(E)). (4)

Intermediate CTC: In addition to the standard CTC loss calculated
from the model output, auxiliary CTC losses can be iteratively ap-
plied to intermediate layers [25, 26]. Such intermediate losses ef-
fectively regularize the model training and lead to improved ASR
performance. We consider training the model with a total of K CTC
losses applied to the output and intermediate layers:

Lsc-ctc =
1

K

{
Lctc(Y |X(E)) +

K−1∑
k=1

Lctc(Y |X(b kE
K
c))

}
, (5)

where 1 < K ≤ E, and we equally distribute the weight across
the losses [28]. In Eq. (5), we adopt the self-conditioning mecha-
nism [29], which improves a CTC-based model by relaxing the con-
ditional independence assumption. For the intermediate layer, from
which a CTC loss is calculated, we modify Eq. (2) as

˜̃X(i) = X̃(i) + FeedForward(X̃(i)), (6)

X(i) = ˜̃X(i) + Linear(A(i)), (7)

where i∈{bkE/Kc}K−1
k=1 , andA(i)=softmax( ˜̃X(i)) is a sequence

of the posterior distributions w.r.t latent tokens computed by CTC.

2.2. Subword segmentation
For tokenizing target sequences, subword segmentation is a widely
used approach for alleviating the out-of-vocabulary problem [30],
where words in a sentence are split into subword units (or n-gram
characters). In the general algorithm for building a subword vocab-
ulary, pairs of subword units are repeatedly merged on the basis of
the frequency appearing in a text corpus. The iteration stops when
the vocabulary reaches an arbitrary size.

We adopt subwords for tokenizing ASR transcriptions. As op-
posed to characters, subwords can provide the model with shorter
output sequences, thus reduce the difficulty of modeling the de-
pendency between outputs. This can be especially important for
CTC-based modeling with the conditional independence assump-
tion. However, it should be noted that increasing the subword vo-
cabulary size makes a sequence close to word-level and potentially
lead to the data-sparsity problem [19].

2.3. Proposed hierarchical conditional model
Figure 1 represents an overview of the proposed hierarchical con-
ditional model of end-to-end ASR. It is similar to the intermediate
CTC training, but the granularity of subword units is gradually in-
creased to word-level as the sequence transduction proceeds in the
self-attention layers. Let Y (k) = (y

(k)
l ∈ V(k)|l = 1, . . . , L(k)) be

an L(k)-length target subword sequence of the k-th CTC loss, which
is generated by the corresponding subword segmenter with a vocab-
ulary of V(k). We hierarchically increase the vocabulary size, as
the position of the CTC loss becomes close to the output layer (i.e.,
|V(<K)|< |V(K)|). Given the target sequences with different units,
the objective of the proposed model is defined by modifying Eq. (5)
as follows:

Lhc-ctc =
1

K

{
Lctc(Y

(K)|X(E)) +

K−1∑
k=1

Lctc(Y
(k)|X(b kE

K
c))

}
.

(8)
If the vocabulary size of each target sequence is the same, Eq. (8)
is equal to Eq. (5). With the conditioning mechanism realized by
Eq. (7), each CTC loss calculation in Eq. (8) is conditioned on the
previously predicted sequences with lower levels of subword units:

Lctc(Y
(k)|X(k)) = − logPctc(Y

(k)|Ŷ (1), ..., Ŷ (k−1), X(k)), (9)

where Ŷ (k) denotes a sequence predicted by the k-th CTC, which is
implicitly represented by the posterior distributions of latent tokens.

In the proposed hierarchical conditional model, we break down
the word-level recognition into a process of progressively integrating
subwords in a fine-to-coarse manner. By making the shallower lay-
ers predict frequent subwords with small units and the deeper layers
predict sparse subwords with large units, we expect the model to use
a hierarchy of linguistic structures and yield word-level representa-
tions effectively.

2.4. Applying CTC losses in parallel
To verify the effectiveness of the proposed model with the hierar-
chical structure, we also consider training a model with CTC losses
applied in parallel to the final layer, which has been shown effective
in several studies [23, 31–33]. The objective for the parallel CTC
losses is defined by modifying Eq. (8) as

Lparactc =
1

K

{
Lctc(Y

(K)|X(E)) +

K−1∑
k=1

Lctc(Y
(k)|X(E))

}
.

(10)
We apply a single linear layer to X(E) for adapting features to each
CTC loss with a different granularity of subword units.



Table 1. Word error rate (WER) [%] on LibriSpeech-{100h, 960h} and TEDLIUM2. Output subword vocabulary size was set to 16k for
LibriSpeech-100h and TEDLIUM2, and 32k for LibriSpeech-960h. We did not use language model or beam-search during decoding.

Model
LibriSpeech-100h LibriSpeech-960h TEDLIUM2

Dev WER Test WER Dev WER Test WER Dev WER Test WERclean other clean other clean other clean other

Transformer

CTC 11.5 24.8 11.8 25.5 4.2 10.0 4.5 9.9 11.8 10.7
SC-CTC 8.9 21.0 9.1 21.7 3.2 8.2 3.5 8.2 9.4 8.6
HC-CTC 8.2 19.9 8.4 20.6 3.1 8.0 3.4 8.0 9.1 8.6
ParaCTC 10.4 24.0 10.9 24.3 4.6 10.3 4.8 10.3 10.9 10.2

Conformer SC-CTC 7.1 17.7 7.7 18.3 2.8 6.7 3.0 6.9 8.5 7.8
HC-CTC 6.9 17.1 7.1 17.8 2.8 6.9 3.0 6.8 8.0 7.6

The parallel CTC training treats the predictions of multi-
granular sequences equally, where finer subword predictions provide
an inductive bias to promote coarse word-level modeling [32].

3. RELATIONSHIP TO PRIOR WORK
Several studies have explored introducing auxiliary CTC losses
to intermediate model layers and demonstrated its effectiveness
for improving various end-to-end ASR systems, based on attention-
based sequence-to-sequence [34,35], recurrent neural network trans-
ducer [36], and CTC [25, 26, 37, 38]. For the CTC-based system,
hierarchically applying low-level supervision (e.g., phonemes) to
the intermediate CTC losses has shown to improve a primary CTC
loss with higher-level recognition [20–24]. The proposed model
can be considered an extension of these hierarchical CTC-based
models. However, our work differs from prior work in the following
perspectives. 1) Each CTC loss is explicitly conditioned on the
sequences predicted previously at lower abstraction levels. We ex-
pect the model to maintain subwords that contribute to composing a
word-level sequence and promote the CTC training with conditional
dependencies [29]. 2) Given that, in recent studies [25, 26], the
intermediate CTC losses are effective even without the hierarchical
supervision, we carefully conduct a comparative experiment and
further analyze the effectiveness of hierarchical modeling. 3) We
only use subwords for target sequences, which does not require ad-
ditional labeling effort and is easy to control the granularity of target
sequences. 4) We evaluate models using the recent state-of-the-art
architectures (i.e., Transformer [27] and Conformer [9]).

4. EXPERIMENTS
4.1. Experimental setup
Data: The experiments were carried out using the LibriSpeech
(LS) [39] and TEDLIUM2 (TED2) [40] datasets. LS consists of
utterances from read English audio books. We trained the models
using the 100-hour subset (LS-100) or the 960-hour full set (LS-
960). TED2 consists of utterances from English Ted Talks and
contains 210 hours of training data. For each dataset, we used the
standard development and test sets. As input speech features, we ex-
tracted 80 mel-scale filterbank coefficients with three-dimensional
pitch features using Kaldi [41], which were augmented by speed
perturbation and SpecAugment [42]. We used SentencePiece [43] to
construct subword vocabularies for each dataset.
Evaluated models: CTC denotes a standard CTC-based model
trained with Lctc from Eq. (4) [1]. SC-CTC is a conventional
model trained with the intermediate CTC losses [25, 26] and the
self-conditioning mechanism [29] defined by Lsc-ctc in Eq. (5). HC-
CTC is the proposed hierarchical conditional model trained with
Lhc-ctc from Eq. (8). ParaCTC is a conventional model trained with
the parallel CTC losses defined by Lparactc in Eq. (10) [23, 31, 32].

Training and decoding configurations: All experiments were con-
ducted using ESPnet [44]. We used the Transformer [27] architec-
ture to train the above models, which consisted of two CNN layers
followed by a stack of 18 self-attention layers. The number of heads
dh, dimension of a self-attention layer dmodel, and dimension of a
feed-forward network dff were set to 4, 256, and 2048, respectively.
We also trained the models using the Conformer architecture [9],
which had a kernel size of 15 and the same configurations as the
Transformer-based models, except dff was set to 1024. The models
were trained up to 100 epochs. For models with multiple CTC losses
(i.e., SC-CTC, HC-CTC, and ParaCTC), we set the total number of
losses to 3 (K = 3). The output vocabulary sizes for LS-100, LS-
960, and TED2 were set to 16384, 32768, and 16384, respectively.
Each vocabulary size was determined on the basis of the maximum
number we could set using SentencePiece, which is large enough
to be considered as word-level. SC-CTC had intermediate losses
with the same vocabulary size as the output’s. For HC-CTC and
ParaCTC, we set (|V(1)|, |V(2)|, |V(3)|) to (256, 2048, 16384) for
LS-100 and TED2, and (512, 4096, 32768) for LS-960. After train-
ing, a final model was obtained by averaging model parameters over
10 to 20 checkpoints with the best validation performance. During
decoding, we did not use any language model and carried out the
best path decoding of CTC [4]. Our implementations are publicly
available to ensure reproducibility (see Sec. 1).

4.2. Main results
Table 1 lists the results on LS-100, LS-960, and TED2 in terms of
the word error rate (WER). Looking at the Transformer results, all
the models trained with multiple CTC losses led to an improvement
over the standard CTC-based model. Especially, SC-CTC and HC-
CTC significantly reduced the WER on all of the tasks. On LS-100,
HC-CTC showed a clear improvement over SC-CTC, indicating the
effectiveness of hierarchically increasing subword units. In contrast,
on LS-960 and TED2 with more data, the performance gap was re-
duced, and HC-CTC performed slightly better than SC-CTC. There-
fore, it can be concluded that our model is particularly effective for
smaller-scale data, where the word-level units are likely to become
sparser. SC-CTC was capable of handling word-level units when
there is a sufficient amount of data. However, the large vocabulary-
sized softmax calculation (in Eq. (7)) led to a severe slow-down of
the SC-CTC training and inference processes. HC-CTC, on the other
hand, was able to perform faster training and inference, using finer
units for the losses from intermediate layers. Due to the same rea-
son regarding the softmax calculation, the model size of HC-CTC
was much smaller than that of SC-CTC (e.g., 36.4M vs. 67.6M on
LS-960). By comparing HC-CTC with ParaCTC, HC-CTC achieved
much lower WERs on all tasks, demonstrating the effectiveness of
applying CTC losses to intermediate layers as well as gradually in-



Table 2. WER [%] on LS-100 dev. sets for Transformer-based mod-
els trained with different combinations of subword vocabulary sizes.

Model |V(1)|-|V(2)|-|V(3)| dev-clean dev-other

SC-CTC 256 - 256 - 256 8.4 22.8
SC-CTC 2k - 2k - 2k 8.5 22.0
SC-CTC 16k - 16k - 16k 8.9 21.0
HC-CTC 256 - 256 - 16k 8.2 20.2
HC-CTC 2k - 2k - 16k 8.4 20.2

HC-CTC 256 - 2k - 16k 8.2 19.9

creasing the subword units in a hierarchical manner.
Using Conformer further improved the performance of SC-CTC

and HC-CTC, and HC-CTC again achieved more favorable perfor-
mance than SC-CTC with faster training and inference. Our Con-
former results are comparable with other strong CTC-based models
of the same size [10, 45, 46], even without exhaustive tuning.

4.3. Analysis on subword vocabulary size
While using sparse word-level units can make training of an ASR
model challenging [19], we observed that the standard CTC-based
model, with the Transformer-based architecture, benefits from train-
ing with a large subword vocabulary size. By increasing the output
vocabulary size from 256 to 16k, the WERs for dev. sets changed
from 11.1/28.1% to 11.5/24.8% on LS-360, and 12.3% to 11.8%
on TED2. Similarly, the performance on LS-960 changed from
4.6/12.1% to 4.4/10.5% by changing the vocabulary size from 2k
to 32k. These decent improvements from increasing the subword
vocabulary size can be attributed to compensating for the CTC’s
incapability of modeling output dependencies (cf. Eq.(3)).

Considering the above observation, we evaluated SC-CTC and
HC-CTC with different combinations of vocabulary sizes, focusing
on Transformer-based models trained on LS-100. From the results
for SC-CTC in Table 2, the performance on the dev-other set im-
proved by increasing the vocabulary size, benefiting from the CTC
training with large subword units. HC-CTC performed better than
the 16k result of SC-CTC, indicating HC-CTC was more effective
at modeling word-level recognition besides the advantage of CTC
training with a large vocabulary size. While the SC-CTC perfor-
mance on the dev-clean set degraded by increasing the vocabulary
size, HC-CTC succeeded in learning robust word-level representa-
tions and achieved the lowest WER with the 16k-vocabulary size.
Comparing the HC-CTC results, hierarchically increasing the sub-
word units resulted in better performance than using the same vocab-
ulary size for intermediate losses, suggesting the importance of grad-
ually increasing the abstraction level for learning word-level repre-
sentations effectively.

4.4. Importance of conditioning
We studied the effectiveness of the conditioning mechanism, which
is one of the important components of the proposed model (cf.
Eq. (9)). The Transformer-based HC-CTC was trained on LS-100
without conditioning each CTC loss (i.e., Eqs. (1) and (2) were
used for all the intermediate layers). Note that this model is similar
to those from previous studies [20–24]. Without the conditioning
mechanism, HC-CTC achieved WERs of 8.7/20.7% and 9.0/21.3%
on dev. sets and test sets, respectively. While these results are better
than those obtained from CTC, SC-CTC, and ParaCTC in Table 1,
HC-CTC with the conditioning mechanism achieved much lower
WERs. Overall, we can conclude that 1) hierarchical modeling
based on multi-granular subword units as well as 2) the conditioning
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Fig. 2. Attention visualization of (a) CTC and (b) HC-CTC trained
on LS-100 from Table 1. We manually chose partial utterance
from dev-other set (116-288045-0000), transcription of which is
“STREETS ASTIR WITH THRONGS OF WELL DRESSED”.

mechanism for explicitly maintaining lower levels of predictions are
effective for learning word-level representations.

4.5. Attention visualization
Figure 2 visualizes attention weights between a source (x-axis) and
target (y-axis) sequences, comparing Transformer-based (a) CTC
and (b) HC-CTC trained on LS-100 from Table 1. We focused on
weights that seemed to contribute to predicting a 16k-subword se-
quence in the final CTC (from the 18-th layer). For HC-CTC, we
show the CTC posteriors (from the 12-th layer) for predicting a 2k-
subword sequence in advance to see the relationship to the 16k pre-
diction. Comparing the overall weights, HC-CTC learned more solid
and confident weights than CTC. HC-CTC seemed to exploit the
lower-level 2k predictions to detect important frames for predicting
each token, effectively composing complex word-level tokens using
the lower-level tokens. For example, HC-CTC successfully recog-
nized the words “THRONGS” and “DRESSED” with proper con-
junctions, while CTC failed to handle these infrequent words.

5. CONCLUSIONS
We proposed a hierarchical conditional model of CTC-based end-to-
end ASR. We trained the model by gradually increasing the subword
units for CTC losses applied to intermediate layers. Each CTC loss
was conditioned on the sequences with lower abstraction to compose
higher-level prediction. Experimental results and in-depth analysis
demonstrated that our model effectively learned word-level repre-
sentations for improving ASR performance. Future work includes
introducing an additional decoder network [47] and using acoustic-
based subword unit for lower-level predictions [48, 49].
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