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ABSTRACT

Many mispronunciation detection and diagnosis (MD&D) research
approaches try to exploit both the acoustic and linguistic features
as input. Yet the improvement of the performance is limited, par-
tially due to the shortage of large amount annotated training data at
the phoneme level. Phonetic embeddings, extracted from ASR mod-
els trained with huge amount of word level annotations, can serve
as a good representation of the content of input speech, in a noise-
robust and speaker-independent manner. These embeddings, when
used as implicit phonetic supplementary information, can alleviate
the data shortage of explicit phoneme annotations. We propose to
utilize Acoustic, Phonetic and Linguistic (APL) embedding features
jointly for building a more powerful MD&D system. Experimental
results obtained on the L2-ARCTIC database show the proposed ap-
proach outperforms the baseline by 9.93%, 10.13% and 6.17% on
the detection accuracy, diagnosis error rate and the F-measure, re-
spectively.

Index Terms— Computer-aided Pronunciation Training, Mis-
pronunciation Detection and Diagnosis, Phoneme Recognition,
Acoustic-phonetic-linguistic Embeddings

1. INTRODUCTION

The development of Computer-aided Pronunciation Training(CAPT)
system empowers language learners a convenient way to practice
their pronunciations|/1} 2, |3], especially for those who have little ac-
cess to professional teachers.

Mispronunciation Detection and Diagnosis (MD&D) is a key
part of CAPT and several methods have been proposed to tackle it.
Goodness of Pronunciation (GOP)[4]], developed by Witt and Young,
computes scores based on log-posterior probability from acoustic
models and then detects mispronunciation with phone-dependent
thresholds. Even though these kinds of approaches provide scores
for mispronunciation detection[3 16, [7], they cannot provide suffi-
cient diagnosis information for pronunciation correction. To bet-
ter obtain diagnosis information, Extended Recognition Network
(ERN)[8! 9} 110] extends the decoding stage of Automatic Speech
Recognition (ASR) by modeling pre-defined context-dependent
phonological rules. However, ERN fails to deal with the mispronun-
ciation patterns which are absent in training data or manual rules.
Additionally, when too many phonological rules are included in
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ERN, recognition accuracy may be affected, thus leading to unreli-
able MD&D feedbacks.

Moreover, since the above-mentioned approaches inevitably in-
volve multiple training stage, complicated manual designs for each
stage are required and the performances are sensitive to the preci-
sion of each stage. Recently, a number of researches have proposed
end-to-end models for phone-level MD&D. CNN-RNN-CTC[L1], a
phoneme recognizer directly mapping the raw acoustic features to
corresponding pronounced phone sequences with the help of con-
nectionist temporal classification (CTC) loss function[12], shows
potentials of end-to-end approaches. Whereas, end-to-end training
depends on adequate well-labeled data. Imagining the challenges of
phoneme labeling, labeling a unit in 40-60ms, and the non-standard
pronunciations from second language (L2) speakers, a large-scale
and labeled second language learner’s speech are hard to collect.

In MD&D scenarios, the canonical phoneme sequences are
available and L2 learners’ pronunciation will be checked by con-
trast with the canonical phoneme sequences. Therefore, linguistic
information from canonical text can be integrated into models to
promote MD&D performance. SED-MDD[13] leverages atten-
tion mechanism to incorporate acoustic features and corresponding
canonical character sequence. And [14] aligns acoustic features with
canonical phoneme sequence from a sentence encoder to decode the
pronounced phoneme sequence. Even if linguistic embedding brings
extra information for MD&D, the scarcity of data to train a capable
acoustic encoder is still a challenge to overcome.

Although phoneme-level annotations are hard to collect, word-
level transcripts for ASR training are relatively adequate and easy
to access. Compared with acoustic features, which may be easily
influenced by noises or the speakers variances, the phonetic embed-
ding, extracted from a well-trained ASR model, may represent pho-
netic information in a noise-robust and speaker-independent man-
ner. Specifically, the phonetic embedding could be the output from
an ASR model like phonetic posteriorgrams (PPGs) or bottleneck
features (BNFs) from hidden layers. Considering that ASR mod-
els are tailored for word recognition, which is subtly different from
phoneme recognition in MD&D, phonetic embedding should be a
supplement, not a substitute for acoustic features. Thus, both acous-
tic features and phonetic embedding should be taken for MD&D
phoneme recognizer training.

Riding on these ideas, we propose a phoneme-level MD&D
framework which employs acoustic embedding (acoustic features),
phonetic embedding and linguistic embedding (canonical phoneme
sequence) as inputs to predict the pronounced phoneme sequence.
Compared with the previous works, the proposed method inno-



Stage 1. —> Query

— Key s EE Lttt bbb
Q Decoder( Softmax | !
—=@ Value ! - !
Transcripts ! H
Concat ' !
[ES 1 1
! ;
H : W |
' '
---------------- ' '
Stage 2. ! Acoustic ! Phonetic HE Concat 1
! Encoder i | Encoder i E 1
Acoustic 1 E i i 1 C
Features H RNN Stack 1 H RNN Stack N '
: Dropout : i Dropout : ; Attention :
: i :
Uax Batch Norm Pl Batch Norm HE !
1 ' 1 1
Phonetic : Bi-LSTM b BIi-LSTM :
Embeddings ! o i
1 ' 1 1
1 ' 1 1
: CNN Stack P CNN Stack :
. L 1 P i
Canonical Acoustic-Phonetic-Linguistic : Bropolt b ﬂEL] !
Sequonce : [ Relu ] ¢ :
Sequence Model i 2x RelLU Polox [ RelLU ] :
: Batch Norm b Batch Norm :
1 ! 1 1
; P i
Recognized L b .I__,______,_' : !
Phoneme
Sequence

@

Acoustic
Features

Phonetic
Embeddings

(b)

Phoneme
Sequence

Fig. 1. Illustration of the proposed approach to Mispronunciation Detection and Diagnosis with acoustic features, phonetic embeddings and
linguistic embeddings (APL) (a) Training flow; (b) APL model architecture.

vatively adopts the information distilled from well-trained L1 ASR
models to resolve MD&D tasks. This information contains relatively
robust phonetic distribution information and is a supplement for raw
acoustic and linguistic features. The proposal utilizes enormous L1
ASR datasets to relieve the data scarcity of MD&D. Meanwhile, ex-
periments conducted on the latest version of L2-ARCTIC corpus[13]]
verify the proposal’s efficiency.

2. PROPOSED METHOD

The proposed model is shown in Fig.1 (b) [14]l. It consists of an
acoustic encoder, a phonetic embedding encoder, a linguistic en-
coder, and a decoder with attention, so it is correspondingly called
APL. As the illustration shows, the model takes Mel-filter banks
(fbanks), phonetic embeddings extracted from pre-trained acoustic
model and canonical phoneme sequence as input respectively and
outputs recognized phoneme sequence. The model is jointly trained
with CTC loss[12].

2.1. Acoustic Encoder

The input of acoustic encoder F, is an 81-dim acoustic feature vec-
tor X = [z1,...,Z¢, ..., 7] (80-dim fbanks and 1-dim energy),
where 7' stands for the number of frames of input speech. E, con-
sists of two convolution neural network (CNN) stacks and four re-
current neural network (RNN) stacks in order. In details, the CNN
stack starts with a 2D convolution layer, followed by a batch normal-
ization layer, one ReLU activation function and a dropout layer. The
RNN stack includes a bi-directional LSTM layer, a batch normaliza-
tion layer and a dropout layer.

High-level acoustic representations are obtained by F, from the
input X

H" = E.(X) ey

where H® = [hY,...,h{, ..., h],] is the encoded acoustic features
with 7" frames.

2.2. Phonetic Encoder

The model takes phonetic embeddings P = [p,, ..., Dy, ..., Pr] as
input, which are extracted by pre-trained ASR models and have an
identical number of frames with acoustic features X. Before inte-
grated with other inputs, the phonetic embeddings are fed into an
encoder E, to derive its representations H? = [hY, ..., h%, hY, ]

t
2

Similar to the acoustic encoder, the phonetic embedding encoder is
also composed of CNN stacks and RNN stacks.

To ensure H? and H “ have the same time resolution, the CNN
stacks in phonetic encoder are exactly the same as audio encoder.
Since these embeddings are relatively high-level representations
compared with raw acoustic features, only one RNN stack is in the
encoder F,.

H' = E,(P)

2.3. Linguistic Encoder

Considering the characteristic of MD&D task, where the canonical
phoneme sequences are available for mispronunciation check[16]],
a linguistic encoder E; serves the purpose of extracting linguistic
representations of a given utterance from its canonical phoneme se-
quence 8 = [$1, ..., Sn, ..., Sn] With N phonemes:

H" HY = E(s) ©)
HX = [p¥, . nE . hX]and HY = [nY,..,hY, ... h¥] are
sequential embeddings to be used as keys and values in the decoder.



2.4. Decoder

A decoder with attention mechanism is utilized to integrate infor-
mation from acoustic, phonetic and linguistic (APL) encoders. The
H*® and HP are concatenated together to compose the query H %
in attention, representing the extracted acoustic features. For a given
frame ¢’ we have

hiy = [hi; hY)] @
where [.;.] denotes the concatenation of two vectors. Then the nor-
malized attention weight between frame hf? in H? and hX in H¥
can be computed by

exp (")
SN exp (RZRET)

Further, the context vector ¢, at frame ¢’ obtained by aligning
the acoustic features with linguistic features is given by

®

Ayl oy =

N
Cy = Zat’,nhr‘f ©)

Note that the context vector ¢ is the weighted average of h), ,
which comes from linguistic representations of a given sentence.
The information may be inadequate to represent those mispro-
nounced phonemes that are absent from the canonical phoneme
sequence s. Hence, in the output layer, the frame-wise probability
Yy, is computed from both ¢,/ and h?:

Yy = softmazx(Wcy; hS] +b) (7

where W and b are weight matrix and bias of output layer. Finally,
the recognized phoneme sequence is obtained by beam-search on

Yy

3. EXPERIMENTS

3.1. Datasets

Our experiments are conducted on TIMIT[17] and L2-ARCTIC
(V5.0)[15]] corpus. TIMIT contains recordings of 630 US native
speakers and L2-ARCTIC includes recordings of 24 non-native
speakers whose mother tongues are Hindi, Korean, Mandarin, Span-
ish, Arabic and Vietnamese. The speakers from each language
contain recordings of two males and two females. Both of the two
corpora are publicly available and include phoneme-level annota-
tions.

We follow the setting in [18] to map the 61-phone set in TIMIT
and 48-phone set in L2-ARCTIC to the 39-phone set. Moreover, the
L2-ARCTIC corpus contains 28 additional phonemes with foreign
accents, marked with a “deviation” symbol “*”. And if a perceived
phoneme was hard to judge, it would be annotated as “err” in L2-
ARCTIC. These 29 special annotations are treated as independent
classes along with 39 standard phones in our experiments. More
details are discussed on the websites

The data split is shown in Table[[] To ensure all classes in
dev/test set to be included in the training set, the speaker splits of L.2-
ARCTIC are as: dev set (EBVS, THV, TNI, BWC, YDCK, YBAA),
test set (NJS, HQTYV, SVBI, NCC, YKWK, ZHAA), training set (all
other speakers).

Uhttps://psi.engr.tamu.edu/12-arctic-corpus-docs/

Table 1. Details of dataset used in the experiments
TIMIT L2-ARCTIC
Training dev | test
Speakers 630 12 6 6
Utterances | 6300 1800 | 897 | 900

3.2. Acoustic Models

Due to the quality of the phonetic embeddings mentioned in 2.3
depends on data quality and quantity for ASR training, two acous-
tic models are involved in the experiments to verify the proposed
method’s robustness. AM1 is an acoustic model proposed by [19]
trained on LibriSpeech[20] corpus, which produces a 144-dim
frame-wise bottleneck features from raw acoustic input. The AM2
is trained on Microsoft EN* dataset, which contains speech of more
than 100k hours from English speakers across the world, and derives
a 41-dim frame-level PPGs.

3.3. Experimental Setups

Six models are implemented for comparisons:
* Baseline-1: CNN-RNN-CTC [11];

* Baseline-2 (AL) [14]: taking acoustic features (fbanks) and
linguistic embeddings (canonical phoneme sequences) as in-
put, CTC as loss;

e PL-1: taking phonetic embedding from AMI1 and linguistic
embedding as input, CTC as loss;

e PL-2: taking phonetic embedding from AM2 and linguistic
embedding as input, CTC as loss;

¢ APL-1: taking acoustic features (fbanks), phonetic embed-
ding from AMI1 and linguistic embedding as input, CTC as
loss;

e APL-2: taking acoustic features (fbanks), phonetic embed-
ding from AM2 and linguistic embedding as input, CTC as
loss;

PL-1 and PL-2 are conducted to investigate the differences be-
tween taking phonetic embeddings extracted from well-trained ASR
model or raw acoustic features as input. APL-1 and APL-2 are im-
plemented to verify the efficiency of taking acoustic, phonetic and
linguistic embeddings together as input for MD&D. Besides, when
comparing PL-1 and APL-1 with Model PL-2 and APL-2 respec-
tively, the influence of L1 ASR acoustic model training can be ob-
served.

The parameters of acoustic encoder, phonetic encoder, linguis-
tic encoder and decoder are the same as baselines. All audios are
in a 16k sampling rate. Fbanks and phonetic embedding are com-
puted with 10ms shift. All models are trained with a batch size of 64
utterances and 200 maximum epochs.

3.4. Phoneme Recognition

All models in 3.3 output recognized phoneme sequences. The rec-
ognized results are aligned with human annotations based on editing
distance. The metrics are computed as (8) and (9), where I indi-
cates insertions, D indicates deletions, S indicates substitutions, and
N indicates number of all phonetic units.

N-S-D

C t = 8
orrectness N (8)



Table 2. Results of phoneme recognition and MD&D

Phoneme Recognition Mispronunciation Detection and Diagnosis
Models Detection | Diagnosis
Correctness | Accuracy FRR FAR £ Recall | Precision | F-measure
Rate Error Rate
Baseline-1 71.95% 70.25% | 24.45% | 24.81% 74.81% 44.14% 74.19% | 34.70% 47.28%
Baseline-2 (AL) 73.21% 71.22% | 24.19% | 27.60% 75.66% 44.07% 72.40% | 35.29% 47.45%
PL-1 82.18% 80.47% | 12.12% | 41.83% 83.31% 37.67% 58.17% | 46.66% 51.78%
PL-2 81.11% 79.56% 13.55% | 39.43% 82.63% 37.64% 60.57% | 44.89% 51.57%
APL-1 81.49% 79.65% | 13.57% | 38.01% 82.84% 37.89% 61.99% | 45.43% 52.44%
APL-2 84.58 % 83.04% 8.88% | 45.51% | 85.59% 33.94% 54.49% | 52.79% 53.62%
T TA
Manually Transcribed Phonetic Units Detection Accuracy = TR TﬁiFR TFA (12)
C t P t/} iati Precision = _TR (13)
w ions |sw " TR+ FR
TR
True False False True Recall = ——— =1— FAR (14)
Acceptance Rejection  Acceptance Rejection TR+ FA
F_ __, Precision * Recall (15)
Correct Diagnosis Measure = 2p  ccision + Recall
Diagnosis Error The Diagnosis Error Rate (DER) for mispronunciation diagnosis

Fig. 2. Hierarchical evaluation structure for mispronunciation detec-
tion and diagnosis [16].

N-S-D-1I

N ®
As shown in Table 2] with the additional linguistic information,
Baseline-2 slightly outperforms Baseline-1.

Comparing Baseline-2 with PL-1 and PL-2, we can find that tak-
ing phonetic embedding extracted from an ASR model as input sig-
nificantly performs better than taking acoustic features. Because the
phonetic embeddings extracted from the ASR model contain pho-
netic distribution learned from rich resources. Under an inadequate
data training scenario, it is efficient to leverage models in rich re-
source cases to represent the articulated content of input speech.

When the acoustic feature is appended, APL-1 and APL-2 fur-
ther surpass the PL-1, PL-2 and Baseline 2. Especially the APL-
2 achieves state-of-the-art. The results verify our assumption that
acoustic features, phonetic embeddings and linguistic embeddings
are all necessary for L2 phoneme recognition. When they are com-
bined together, the joint embedding learning shows its potential.

Accuracy =

3.5. Mispronunciation Detection and Diagnosis

The hierarchical evaluation structure in [16] is adopted to measure
the MD&D performance, as shown in Fig[2] The correct detections
include true acceptance (TA) and true rejection (TR), while the in-
correct detections are false rejection (FR) and false acceptance (FA).
And those cases in TR are further split into correct diagnosis (CD)
and diagnosis error (DE). Then the metrics for mispronunciation de-
tection are calculated follow - ().

FR
FRE= 75k (10)
AR - — A (1n)

T FALTR

is calculated as (T6):

DE

DE+CD (16)

Diagnosis Error Rate =

As presented in Table [2} the best detection accuracy (85.59%),
diagnosis error rate (33.94%) and F-measure (53.62%) occur when
acoustic features, phonetic embeddings and linguistic information
are given together as input. The APL-2 gains 9.93%, 10.13% and
6.17% improvements on detection accuracy, diagnosis error rate and
F-measure against Baseline-2 respectively. The contrast experimen-
tally verifies the efficiency of added phonetic embeddings.

It is worth mentioning that the performance of PL-1 is very close
to PL-2, but when acoustic features are appended, APL-2 signifi-
cantly outperforms APL-1. We assume that AM2 is a deeper model
trained on a larger dataset (100k v.s. 960 hours), so the phonetic rep-
resentations by AM?2 are well noise-tolerant and speaker-normalized
but may lose some useful information for MD&D. When the acous-
tic features are provided, the encoders obtain better representations
to align with the linguistic embedding, thus producing a more ac-
curate output. More supplementary analysis can be found on the
websitd?]

4. CONCLUSION

We propose a model which incorporates acoustic, phonetic and
linguistic (APL) embedding features for improving MD&D per-
formance. The phonetic embeddings are extracted from a well-
trained, speaker-independent, noise-robust ASR model without
using phoneme-level annotated data. With the combination of
acoustic features, phonetic embedding and linguistic embeddings
derived from the canonical phoneme sequence, the APL approach
can achieve significant improvements on phoneme recognition and
MD&D performance. Testing results on the L2-ARCTIC database
show that the proposed approach is effective for improving the
detection accuracy, diagnosis error rate and F-measure over the
baseline system by 9.93%, 10.13% and 6.17%, respectively.

Zhttps://thuhcsi.github.io/icassp2022-MDD-APL/



(1]

(2]

(3]

(4]

(5]

(6]

(71

(8]

(9]

(10]

(11]

[12]

(13]

5. REFERENCES

Keelan Evanini and Xinhao Wang, “Automated speech scor-
ing for non-native middle school students with multiple task
types,” in Proc. Interspeech 2013, 2013, pp. 2435-2439.

Yanlu Xie, Xiaoli Feng, Boxue Li, Jinsong Zhang, and Yujia
Jin, “A mandarin 12 learning app with mispronunciation de-
tection and feedback,” in Proc. Interspeech 2020, 2020, pp.
1015-1016.

Ke Shi, Kye Min Tan, Richeng Duan, Siti Umairah Md. Salleh,
Nur Farah Ain Suhaimi, Rajan Vellu, Ngoc Thuy Huong Helen
Thai, and Nancy F. Chen, “Computer-assisted language learn-
ing system: Automatic speech evaluation for children learning
malay and tamil,” in Proc. Interspeech 2020, 2020, pp. 1019—
1020.

S.M.Witt and S.J.Young, “Phone-level pronunciation scoring
and assessment for interactive language learning,” Speech com-
munication, vol. 30, no. 2-3, pp. 95-108, 2000.

Joost van Doremalen, Catia Cucchiarini, and Helmer Strik,
“Using non-native error patterns to improve pronunciation ver-
ification,” in Proc. Interspeech 2010, 2010, pp. 590-593.

Wenping Hu, Yao Qian, Frank K.Soong, and Yong Wang, “Im-
proved mispronunciation detection with deep neural network
trained acoustic models and transfer learning based logistic re-
gression classifiers,” Speech Communication, vol. 67, pp. 154—
166, 2015.

Jiatong Shi, Nan Huo, and Qin Jin, “Context-aware goodness
of pronunciation for computer-assisted pronunciation train-
ing,” in arXiv preprint arXiv:2008.08647, 2020.

Wai-Kit Lo, Shuang Zhang, and Helen Meng, “Automatic
derivation of phonological rules for mispronunciation detec-
tion in a computer- assisted pronunciation training system,” in
Proc. Interspeech 2010, 2010, pp. 765-768.

Alissa M Harrison, Wai-Kit Lo, Xiao jun Qian, and He len
Meng, “Implementation of an extended recognition network
for mispronunciation detection and diagnosis in computer-
assisted pronunciation training,” in Proc. Speech and Lan-
guage Technology in Education (SLaTE 2009), 2009, pp. 45—
48.

Xiaojun Qian, Frank Soong, and Helen Meng, “Discrimina-
tively trained acoustic models for improving mispronunciation
detection and diagnosis in computer aided pronunciation train-
ing (capt),” in Proc. Interspeech 2010, 2010.

Wai-Kim Leung, Xunying Liu, and Helen Meng, “Cnn-rnn-
ctc based end-to-end mispronunciation detection and diagno-
sis,” in ICASSP 2019 - 2019 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), 2019,
pp. 8132-8136.

Alex Graves, Santiago Ferndndez, Faustino Gomez, and Jiirgen
Schmidhuber, “Connectionist temporal classification: La-
belling unsegmented sequence data with recurrent neural ’net-
works,” ICML 2006 - Proceedings of the 23rd International
Conference on Machine Learning, pp. 369-376, 01 2006.

Yiqing Feng, Guanyu Fu, Qingcai Chen, and Kai Chen, “Sed-
mdd: Towards sentence dependent end-to-end mispronuncia-
tion detection and diagnosis,” in ICASSP 2020 - 2020 IEEE
International Conference on Acoustics, Speech and Signal Pro-
cessing (ICASSP), 2020, pp. 3492-3496.

[14]

[15]

[16]

[17]

[18]

[19]

[20]

Kaiqi Fu, Jones Lin, Dengfeng Ke, Yanlu Xie, Jinsong Zhang,
and Binghuai Lin, “A full text-dependent end to end mispro-
nunciation detection and diagnosis with easy data augmenta-
tion techniques,” in arXiv preprint arXiv:2104.08428v1, 2021.

Guanlong Zhao, Sinem Sonsaat, Alif Silpachai, Ivana Lu-
cic, Evgeny Chukharev-Hudilainen, John Levis, and Ricardo
Gutierrez-Osuna, “L2-arctic: A non-native english speech cor-
pus,” in Proc. Interspeech 2018, 2018, pp. 2783-2787.

Kun Li, Xiaojun Qian, and Helen Meng, “Mispronunciation
detection and diagnosis in 12 english speech using multidis-
tribution deep neural networks,” IEEE/ACM Transactions on
Audio, Speech, and Language Processing, vol. 25, no. 1, pp.
193-207, 2017.

John S. Garofolo, Lori F. Lamel, William M. Fisherand
Jonathan G. Fiscus, David S. Pallett, Nancy L. Dahlgren, and
Victor Zue, “Timit acoustic-phonetic continuous speech cor-
pus,” Linguistic Data Consortium, 11 1992.

K.-F. Lee and H.-W. Hon, “Speaker-independent phone recog-
nition using hidden markov modelss,” IEEE Transactions on
Acoustics, Speech, and Signal Processing, vol. 37, pp. 1641-
1648, 11 1989.

Songxiang Liu, Yuewen Cao, Disong Wang, Xixin Wu, Xuny-
ing Liu, and Helen Meng, “Any-to-many voice conversion with
location-relative sequence-to-sequence modeling,” IEEE/ACM
Transactions on Audio, Speech, and Language Processing, vol.
29, pp. 1717-1728, 2021.

Vassil Panayotov, Guoguo Chen, Daniel Povey, and Sanjeev
Khudanpur, “Librispeech: An asr corpus based on public do-
main audio books,” in 2015 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), 2015, pp.
5206-5210.



	1  Introduction
	2  PROPOSED METHOD
	2.1  Acoustic Encoder
	2.2  Phonetic Encoder
	2.3  Linguistic Encoder
	2.4  Decoder

	3  EXPERIMENTS
	3.1  Datasets
	3.2  Acoustic Models
	3.3  Experimental Setups
	3.4  Phoneme Recognition
	3.5  Mispronunciation Detection and Diagnosis

	4  CONCLUSION
	5  References

