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ABSTRACT

Catering to the proliferation of Internet of Things devices and
distributed machine learning at the edge, we propose an en-
ergy harvesting federated learning (EHFL) framework in this
paper. The introduction of EH implies that a client’s avail-
ability to participate in any FL round cannot be guaranteed,
which complicates the theoretical analysis. We derive novel
convergence bounds that capture the impact of time-varying
device availabilities due to the random EH characteristics of
the participating clients, for both parallel and local stochas-
tic gradient descent (SGD) with non-convex loss functions.
The results suggest that having a uniform client scheduling
that maximizes the minimum number of clients throughout
the FL process is desirable, which is further corroborated by
the numerical experiments using a real-world FL task and a
state-of-the-art EH scheduler.

Index Terms— Federated learning, energy harvesting,
stochastic gradient descent, convergence analysis.

1. INTRODUCTION

Federated learning (FL) is a novel machine learning (ML)
paradigm that builds a global ML model by training at many
distributed clients. FL represents an ongoing paradigm shift
towards moving the data collection and model training away
from the server and to the edge [1, 2]. The proliferation of
Internet of Things (IoT) devices that produce massive amount
of data directly at the edge devices, the desire to reduce data
transfer to the cloud, and the need to improve ML responsive-
ness have made FL in IoT networks an important application.

Despite its potential and impact, FL in IoT networks is a
difficult task as IoT devices are highly resource constrained.
In particular, this paper focuses on enabling FL with energy
harvesting (EH) devices [3, 4], where the computation [5, 6,
7] and communication [8, 9, 10, 11, 12] operations of FL at an
EH device depend entirely on its harvested energy. The focus
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of FL with EH devices is motivated by the rapid deployment
of these devices in IoT networks, such as the agricultural ap-
plication where devices may be exclusively powered by am-
bient energy sources such as wind or solar [13].

The main challenge, however, is that the introduction of
EH devices complicates the already difficult FL problem. In
particular, FL cannot narrowly focus on each learning round,
but must consider the temporal correlation of progressive
learning rounds that collectively determine the final learning
outcome. With EH devices, the availability of any given client
is no longer guaranteed for FL in a given round, if it does not
have sufficient energy for computation and communication.
Furthermore, the random evolution of the energy queue at
each device also has temporal correlation that depends on
both the energy arrival process and the FL client schedul-
ing algorithm. The coupled temporal correlations of the FL
process and the EH process represent a significant challenge
in both theoretical analysis and algorithm design, suggesting
that one cannot separately consider the EH design and FL
design when optimizing the overall system performance.

In this paper, we propose an energy harvesting federated
learning (EHFL) framework, where EH clients are scheduled
to participate in the FL process. To address the aforemen-
tioned challenges of EHFL, we first analyze the convergence
behavior of FL under an arbitrary sequence of available
clients that participate in the corresponding learning rounds.
This analysis is useful in that the sequence of clients can be
viewed as the output of an EH client scheduler, and opti-
mizing the resulting convergence bound sheds light on the
desired behavior of the EH scheduler. A unified principle
for both parallel and local stochastic gradient descent (SGD)
emerges from the analysis, which suggests that a uniform
client scheduling that maximizes the minimum number of
clients in FL is beneficial. This theoretical result is corrobo-
rated by a numerical experiment using the standard CIFAR-10
classification task and a state-of-the-art EH scheduler.

2. THE EHFL FRAMEWORK

The proposed energy harvesting federated learning (EHFL)
framework is illustrated in Fig. 1. This framework is notably
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Fig. 1. Illustration of the EHFL framework.

different from standard FL, because the introduction of EH
devices implies that a client’s availability to participate in any
round cannot be guaranteed. FL must deal with different sets
of available clients that are determined exogenously (by the
EH scheduler) in every round, which would affect the model
convergence. To further complicate the analysis, such client
availability is not independent over time, as clients who have
participated in one round and consumed the harvested energy
are less likely to have sufficient energy for the next round.

Federated learning model. In a typical case, the goal of FL
is to solve the standard empirical risk minimization (ERM)
problem:

min
x∈Rd

f(x) = min
x∈Rd

1

D

∑
z∈D

l(x; z),

in a distributed fashion, where x ∈ Rd is the machine learn-
ing model variable that we would like to optimize, l(x; z)
is the loss function evaluated at model x and data sample
z, and f : Rd → R is the differentiable loss function aver-
aged over the total dataset D with size D. We denote x∗ :=
arg minx∈Rd f(x), and f∗ := f(x∗). We denote the maximum
number of clients in the FL system as M , and the total global
dataset is the union of all local datasets at these M clients:
D =

⋃M
m=1Dm. We assume that Di has Di data samples at

client i ∈ [M ] := {1, · · · ,M}, and all local datasets are non-
overlapping, hence

∑
iDi = D. Note that M is generally

not the number of clients that participate in FL in any given
learning round. The original ERM problem can be rewritten
as

min
x∈Rd

f(x) = min
x∈Rd

M∑
i=1

Di

D
fi(x),

where fi : Rd → R is the local loss function for client i, aver-
aged over its local datasetDi, i.e., fi(x) = 1

Di

∑
ξ∈Di

l(x; ξ).
We consider that local SGD [14] is adopted to solve the

FL problem. In the t-th round of local SGD, t = 1, · · · , T ,

there are nt clients Nt := {m1, · · · ,mnt} who actively par-
ticipate in FL. Each client independently runs K individual
SGD steps before aggregating the local models at the server.
Specifically, the t-th round starts with client i ∈ Nt receiving
the latest global model xt from the parameter server: xit =
xit,0 = xt. It then runs K steps of stochastic gradient evalua-
tion:

xit,τ+1 = xit,τ − ηt∇f̃i(xit,τ ),∀τ = 0, · · · ,K − 1. (1)

The client’s updated model after these K steps can be written
as xit+1 = xit,K . Notation wise, we use f̃i(x) := l(x; ξi) to
denote the loss function of model x evaluated with a random
data sample ξi at client i. The server collects the local models
{xit+1, i ∈ Nt} and computes a simple aggregation xt+1 =
1
nt

∑
i∈Nt

xit+1 as the global model for the next round. Local
SGD then moves on to the (t+ 1)-th round.
Energy harvesting model. In EHFL, each client i ∈ [M ] is
powered by energy harvested from the ambient environment.
We assume that each client has an energy queue (recharge-
able batteries or capacitors) to store the harvested energy. The
energy queue at each client is replenished randomly and con-
sumed by computation and communication for FL. We as-
sume that the energy unit is normalized so that if a device
participates in one round of FL, it consumes one unit of en-
ergy. This energy unit represents the cost of both computation
and communication. We assume the duration between two
consecutive rounds is fixed.

Let Ei(t) be the total amount of energy units available
at the beginning of round t at device i, and Ai(t) be the
amount of energy units harvested during the t-th round. We
assume Ai(t) is an independent and identically distributed
(IID) Bernoulli random variable with E[Ai(t)] = λi. Dif-
ferent values of λi capture the energy heterogeneity among
clients. Then, the energy level at device i evolves according
to the following equation:

Ei(t+ 1) = min{(Ei(t)− 1{i ∈ Nt}) +Ai(t), Emax} (2)

where 1{·} is the indicator function, Emax is the capacity of
the battery, and the energy causality condition requires that
Ei(t) ≥ 1{i ∈ Nt} for all i, t.

3. CONVERGENCE ANALYSIS FOR EHFL

We analyze the convergence of FL with an arbitrary sequence
of participating clients {N1, · · · ,NT } as the output of the EH
scheduler, with non-convex loss functions. We first focus on a
special case of parallel SGD, which refers to distributed SGD
with per-step model average, to gain some insight of the FL
convergence behavior due to the random EH characteristics.
We then extend the analysis to local SGD with periodic model
average whose period is strictly larger than one. Finally we
summarize the main theoretical result and discuss its implica-
tion on the EH scheduler design.



3.1. Parallel SGD: K = 1

3.1.1. Assumptions

We limit our attention to L-smooth (possibly non-convex)
loss functions, as stated in Assumption 1. In addition, we as-
sume that the stochastic gradients are unbiased at all clients,
and the variance is (uniformly) bounded in Assumption 2.

Assumption 1 l(x, ξ) is L-smooth: ‖∇l(x, ξ)−∇l(y, ξ)‖ ≤
L‖x− y‖ for any x, y ∈ Rd and any ξ ∈ D.

Assumption 2 SGD is unbiased at all clients: Eξ∇fi(x) =
∇f(x),∀i, and its variance is bounded: Eξ‖∇l(x, ξ) −
∇f(x)‖2 ≤ σ2.

3.1.2. Main result

We note that for non-convex loss functions, it is well-
known that SGD may converge to a local minimum or
saddle point, and it is a common practice to evaluate the
expected gradient norms as an indicator of convergence. In
particular, an algorithm achieves an ε-suboptimal solution if
1
T

∑T−1
t=0 E‖∇f(xt)‖2 ≤ ε, which guarantees the conver-

gence to a stationary point [15].
We now state our main result in Theorem 1. Detailed

proofs of both theorems can be found in the Appendix.

Theorem 1 Suppose Assumptions 1 and 2 hold. Consider an
energy harvesting client scheduler that produces nt clients
to participate in the t-th round parallel SGD. Assume 0 <
nmin ≤ nt ≤ nmax ≤ M , and we choose a parameter η

satisfying 0 < η ≤ 1
L

√
T

nmax
. Then, if we set the learning

rate of SGD as

ηt = η

√
nt
T
, ,∀t = 0, · · · , T − 1,

the convergence of parallel SGD with non-convex loss func-
tions and IID local datasets satisfies:

1

T

T−1∑
t=0

E‖∇f(xt)‖2 ≤
f(x0)− f∗

η
√
nminT − L

2 η
2nmin

+
Lσ2

2η
√
nminT − Lη2nmin

∼ O
(

1√
nminT

)
. (3)

Remark 1 The key novelty in this theorem is to establish the
relationship ηt = η

√
nt

T , which is accomplished by minimiz-
ing the derived upper bound as a general function of ηt and nt.
Theorem 1 states that if we tie the choice of learning rate to
the available number of clients according to ηt ∼ O

(√
nt
)
,

then we achieve the sameO
(

1/
√
T
)

convergence rate as the
constant-client parallel SGD [14].

Remark 2 It is known that within a proper range that guar-
antees the convergence, selecting larger stepsize has the ben-
efit of speeding up the SGD process. In this spirit, a partic-

ular choice of η is η = 1
L

√
T

nmax
, which leads to ηmin :=

min ηt = 1
L

√
nmin

nmax
. This results in a convergence scaling of

O
(√

nmax

nmin

1√
T

)
. Clearly, selecting a uniform client schedul-

ing such that nmax = nmin minimizes the coefficient of 1√
T

.
This insight thus provides a theoretical guidance for the EH
scheduler design.

Remark 3 Assumption 2 corresponds to the so-called IID lo-
cal dataset setting for FL. How to extend the analysis to non-
IID local datasets is an interesting future research direction.

3.2. Local SGD: K > 1

We now analyze the case of local SGD withK > 1. The main
result is stated as follows.

Theorem 2 Suppose Assumptions 1 and 2 hold. Consider an
energy harvesting client scheduler that produces nt clients to
participate in the t-th round local SGD. Assume 0 < nmin ≤
nt ≤ nmax ≤ M , and we choose a parameter η satisfying
0 < η ≤ 1

2KL

√
1

30nmax
. Then, if we set the stepsize of SGD

at the t-th round as

ηt = η

√
nt
T
,∀t = 0, · · · , T − 1,

then we achieve the following convergence of local SGD with
non-convex loss functions:

1

T

T−1∑
t=0

E‖∇f(xt)‖2 ≤
2
K (f(x0)− f∗) + Lσ2η2

η
√
nminT −

√
30KLη2nmin

+
5KL2σ2η3n

3
2
max

η
√
nminT −

√
30KLη2nmin

√
T

= O
(

1√
nminT

)
.

(4)

Remark 4 The key challenge for analyzing local SGD is that
the gradient estimation after the first step becomes biased,
i.e., they do not represent the true gradients in expectation.
Having a varying nt means that different rounds are “hetero-
geneous” in terms of averaging the biased SGDs with vary-
ing variances, which cannot be easily handled when bounding
the convergence rate. The proof relies on enhancing the per-
turbed iterate framework [16] to decouple the impact of each
additional SGD step by a careful construction of the virtual
model sequence. This allows us to derive an ηt-dependent
upper bound for the average (over nt clients) gradient for
each SGD step τ = 0, · · · ,K − 1. This bound is then uti-
lized in the enhanced perturbed iterate framework to derive a
non-trivial (nt, ηt)-dependent convergence rate upper bound.



Then, similar to Theorem 1, we can minimize this bound over
the choice of ηt as a function of nt.

Remark 5 Theorem 2 unifies the selection of learning rate
as a function of the EH device availability for both parallel
and local SGDs (at least with respect to the scaling), which
suggests that the EH scheduler design can be agnostic to the
SGD steps chosen by the FL task. This is an important fea-
ture that improves the generalization of the proposed EHFL
framework in terms of the performance guarantees.

3.3. EH scheduler design

The convergence analysis for both parallel and local SGD in-
dicates that maintaining a balanced number of clients par-
ticipating in each round throughout the learning horizon is
desirable. However, strictly maintaining a constant number
of clients in the face of stochastic energy arrival and energy
causality constraint is a very challenging task, not to mention
the inhomogeneous EH processes at clients.

In order to gain some intuition of the desired EH scheduler
design, we first ignore the stochasticity of the EH process and
focus on the long-term average EH rate instead. Given the
total EH rate Λ :=

∑M
i=1 λi and the energy flow conserva-

tion condition (i.e., energy consumption rate must be upper
bounded by the energy arrival rate), the average number of
active clients in each round must be upper bounded by Λ as
well. For a clear exposition of our rationale, we assume Λ is
an integer. Thus, if we are able to obtain a subset of clientsNt
in round t such that |Nt| = Λ with high probability, then we
can expect that the nmin throughout the learning process is
maximized, and the convergence rate can thus be optimized
with high probability based on our theoretical results. The
problem then boils down to ensuring such a selection of Nt
is feasible in each round, in the presence of stochastic energy
arrivals and heterogeneous EH rates across the clients.

In our previous work [9], we have developed an energy
queue length based myopic scheduling policy when Emax =
∞. At the beginning of round t, the scheduler first selects
Λ clients with the longest energy queues and forms a candi-
date set of active clients, denoted as N ′t . Then, it determines
Nt = {i : i ∈ N ′t , Ei(t) ≥ 1}. The myopic scheduling pol-
icy has a queue-length balancing nature, i.e., it tries to equal-
ize the battery levels of all clients by prioritizing clients with
longer energy queues. As a result, it ensures that |Nt| = Λ
in almost every round t. We will evaluate the performance of
this myopic EH scheduling policy in the experiment.

4. SIMULATION RESULTS

Experiment setup. We have carried out an experiment on
the standard real-world CIFAR-10 classification task [17] un-
der the proposed EHFL framework. We set M = 10, K = 5,
and mini-batch size of 50. The nominal learning rate initially

Fig. 2. Model convergence comparison of Myopic [9] with
two baseline EH schedulers Round Robin and Greedy for
EHFL.

sets to 0.15 and decays every 10 rounds with rate 0.99. On top
of that, we apply a c

√
nt variation such that the mean value

for every 10 rounds remain the same as the nominal learning
rate. We train a convolutional neural network (CNN) model
with two 5×5 convolution layers (both with 64 channels), two
fully connected layers (384 and 192 units respectively) with
ReLU activation and a final output layer with softmax. The
two convolution layers are both followed by 2× 2 max pool-
ing and a local response norm layer. In each round, the avail-
able clients are generated by the corresponding EH scheduler,
and will participate in FL if its available energy is larger than
one unit. Otherwise, the client will not participate in FL in
the current round. We set Λ = 5 with a homogeneous arrival
rate of all clients for the Myopic policy of [9].

Main result. The model convergence performances of
EHFL under three EH schedulers are plotted in Fig. 2. The
Round Robin policy cyclically schedule among all clients,
while the Greedy policy always schedule the clients with
non-empty energy queues. We can see that the Myopic policy
has the best performance among the three scheduler, while
Round Robin has the worst convergence.

5. CONCLUSIONS

We have carried out a novel convergence analysis of federated
learning under an arbitrary sequence of participating clients
for each learning round, for non-convex loss functions and
both parallel and local SGD. The analysis revealed a unified
client scheduling principle, which is to maintain a balanced
number of clients participating in each round throughout the
learning horizon. This result offers a principled guideline for
the energy harvesting client scheduler design, and we have
shown via a numerical experiment that a state-of-the-art en-
ergy harvesting scheduler that follows this guideline achieves
better convergence performance for a standard real-world FL
task.
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A. PROOF OF THEOREM 1

Proof: The server model update at the end of round t is

xt+1 =
1

nt

∑
i∈Nt

xit+1 =
1

nt

∑
i∈Nt

(xt − ηt∇fi(xt)) = xt −
ηt
nt

∑
i∈Nt

∇fi(xt).

We can evaluate the average loss with respect to model xt+1 as

Ef(xt+1) = Ef

(
xt −

ηt
nt

∑
i∈Nt

∇fi(xt)

)

≤ Ef(xt)−
ηt
nt

E

〈
∇f(xt),

∑
i∈Nt

∇fi(xt)

〉
+
Lη2t

2
E

∥∥∥∥∥ 1

nt

∑
i∈Nt

∇fi(xt)

∥∥∥∥∥
2

= Ef(xt)− ηtE‖∇f(xt)‖2 +
Lη2t

2
E

∥∥∥∥∥ 1

nt

∑
i∈Nt

∇fi(xt)

∥∥∥∥∥
2

. (5)

We analyze the last term in Eqn. (5), and have

E

∥∥∥∥∥ 1

nt

∑
i∈Nt

∇fi(xt)

∥∥∥∥∥
2

= E

∥∥∥∥∥ 1

nt

∑
i∈Nt

∇fi(xt)−∇f(xt) +∇f(xt)

∥∥∥∥∥
2

= Ext

Eξ
∥∥∥∥∥ 1

nt

∑
i∈Nt

∇fi(xt)−∇f(xt) +∇f(xt)

∥∥∥∥∥
2

|xt


= Ext

Eξ
∥∥∥∥∥ 1

nt

∑
i∈Nt

(∇fi(xt)−∇f(xt))

∥∥∥∥∥
2

+ ‖∇f(xt)‖2 |xt


≤ σ2

nt
+ E‖∇f(xt)‖2. (6)

Plugging Eqn. (6) back to (5) leads to

Ef(xt+1) ≤ Ef(xt)− ηtE‖∇f(xt)‖2 +
Lη2t

2
E

∥∥∥∥∥ 1

nt

∑
i∈Nt

∇fi(xt)

∥∥∥∥∥
2

≤ Ef(xt)− ηtE‖∇f(xt)‖2 +
Lη2t

2
E‖∇f(xt)‖2 +

Lη2t σ
2

2nt

= Ef(xt)−
(
ηt −

Lη2t
2

)
E‖∇f(xt)‖2 +

Lη2t σ
2

2nt
. (7)

Eqn. (7) is equivalent to (
ηt −

Lη2t
2

)
E‖∇f(xt)‖2 ≤ Ef(xt)− Ef(xt+1) +

Ln2tσ
2

2nt
, (8)

and we can further sum Eqn. (8) from 0 to T − 1 and average, resulting in

1

T

T−1∑
t=0

(
ηt −

Lη2t
2

)
E‖∇f(xt)‖2 ≤ 1

T
(f(x0)− Ef(xT )) +

1

T

T−1∑
t=0

Lη2t σ
2

2nt

≤ 1

T
(f(x0)− f∗) +

Lσ2

2T

T−1∑
t=0

η2t
nt
. (9)



The condition 0 < η ≤ 1
L

√
T

nmax
implies the function ηt − Lη2t

2 is both positive and monotonically increasing with ηt. Hence

1

T

T−1∑
t=0

(
ηmin −

Lη2min

2

)
E‖∇f(xt)‖2 ≤ 1

T

T−1∑
t=0

(
ηt −

Lη2t
2

)
E‖∇f(xt)‖2

≤ 1

T
(f(x0)− f∗) +

Lσ2η2

2T
(10)

where (10) comes from plugging ηt = η
√

nt

T in (9). Dividing the t-independent
(
ηmin − Lη2min

2

)
from both sides of Eqn. (10)

and plugging in ηmin = η
√

nmin

T complete the proof. �

B. PROOF OF THEOREM 2

Proof:

Some preparation is necessary to facilitate this proof. First of all, the following lemma from [18, Lemma 3] is useful.

Lemma 1 For ηt ≤ 1/ (8KL) we have

1

nt

∑
i∈Nt

E
∥∥xt − xit,τ∥∥2 ≤ 5Kσ2η2t + 30K2η2t ‖∇f(xt)‖2 .

Next we define some new variables to simplify the derivation. We denote

∇git :=

K−1∑
τ=0

∇fi
(
xit,τ

)
∇gt :=

1

nt

∑
i∈Nt

∇git =
1

nt

∑
i∈Nt

K−1∑
τ=0

∇fi
(
xit,τ

)
∇ḡt := E{ξi}∇gt =

1

nt

∑
i∈Nt

K−1∑
τ=0

∇f
(
xit,τ

)

We start with

f(xt+1) = f

(
1

nt

∑
i∈Nt

xit+1

)
= f (xt − ηt∇gt)

≤ f(xt)− 〈∇f(xt), ηt∇gt〉+
L

2
η2t ‖∇gt‖

2

= f(xt)− ηtK ‖∇f(xt)‖2 + ηt 〈∇f(xt),K∇f(xt)−∇gt〉+
Lη2t

2
‖∇gt‖2 . (11)



The next steps are to separately analyze the expectation of the last two terms in Eqn. (11). We first have

E 〈∇f(xt),K∇f(xt)−∇gt〉 = E

〈
∇f(xt),

1

nt

∑
i∈Nt

K−1∑
τ=0

(
∇f(xt)−∇f(xit,τ )

)〉

(b1)
=

K

2
E ‖∇f(xt)‖2 +

1

2Kn2t
E

∥∥∥∥∥∑
i∈Nt

K−1∑
τ=0

(
∇f(xt)−∇f(xit,τ )

)∥∥∥∥∥
2

− 1

2K
E ‖∇ḡt‖2

(b2)

≤ K

2
E ‖∇f(xt)‖2 +

1

2nt

∑
i∈Nt

K−1∑
τ=0

E
∥∥∇f(xt)−∇f(xit,τ )

∥∥2 − 1

2K
E ‖∇ḡt‖2

≤ K

2
E ‖∇f(xt)‖2 +

L2

2nt

∑
i∈Nt

K−1∑
τ=0

E
∥∥xt − xit,τ∥∥2 − 1

2K
E ‖∇ḡt‖2

(b3)

≤ K

2

(
1 + 30K2L2η2t

)
E ‖∇f(xt)‖2 +

5K2L2σ2η2t
2

− 1

2K
E ‖∇ḡt‖2 (12)

where (b1) is because 〈x, y〉 = 1
2 ‖x‖

2
+ 1

2 ‖y‖
2 − 1

2 ‖x− y‖
2, (b2) is due to Cauchy-Schwartz, and (b3) is from Lemma 1.

We then evaluate the expectation of the last term of Eqn. (11).

E ‖∇gt‖2 = E

∥∥∥∥∥ 1

nt

∑
i∈Nt

K−1∑
τ=0

∇fi(xit,τ )

∥∥∥∥∥
2

(b4)
=

1

nt
E

∥∥∥∥∥∑
i∈Nt

K−1∑
τ=0

(
∇f(xit,τ )−∇fi(xit,τ )

)∥∥∥∥∥
2

+ E ‖∇ḡt‖2

≤ Kσ2

nt
+ E ‖∇ḡt‖2 (13)

where (b4) uses the fact that the SGD sampling error is independent of other random variables.
Putting both Eqns. (12) and (13) back to the expectation of Eqn. (11), we have

Ef(xt+1) ≤ Ef(xt)−
K

2

(
ηt − 30K2L2η3t

)
E ‖∇f(xt)‖2 +

5K2L2σ2η3t
2

+
KLσ2η2t

2nt
+

(
Lη2t

2
− ηt

2K

)
E ‖∇ḡt‖2

(b5)

≤ Ef(xt)−
K

2

(
ηt − 30K2L2η3t

)
E ‖∇f(xt)‖2 +

5K2L2σ2η3t
2

+
KLσ2η2t

2nt
(14)

where (b5) is because for the choice of η ≤ 1
2KL

√
1

30nmax
we can guarantee ηt ≤ 1/

(
2
√

30KL
)
< 1/ (KL), and thus

Lη2t
2
− ηt

2K
≤ 0.

Now, rearranging terms of both sides in Eqn. (14) and averaging over t = 0 to t = T − 1 leads to

1

T

T−1∑
t=0

K

2

(
ηt − 30K2L2η3t

)
E ‖∇f(xt)‖2 ≤ f(x0)− Ef(xT )

T
+

1

T

T−1∑
t=0

KLσ2η2t
2nt

+
1

T

T−1∑
t=0

5K2L2σ2η3t
2

≤ f(x0)− f∗

T
+

1

T

T−1∑
t=0

KLσ2η2t
2nt

+
1

T

T−1∑
t=0

5K2L2σ2η3t
2

. (15)

When ηt ≤ 1/
(
2
√

30KL
)
, we have

ηt − 30K2L2η3t ≥ ηt
(

1−
√

30KLηt

)
≥ ηmin −

√
30KLη2min.



Then, Eqn. (15) can be further bounded as

1

T

T−1∑
t=0

E ‖∇f(xt)‖2 ≤
2
K (f(x0)− f∗)

T
(
ηmin −

√
30KLη2min

) +
5KL2σ2

T
(
ηmin −

√
30KLη2min

) T−1∑
t=0

η3t

+Lσ2 1

T
(
ηmin −

√
30KLη2min

) T−1∑
t=0

η2t
nt
. (16)

Plugging in ηt = η
√
nt/T , ηmin = η

√
nmin/T , and using

T−1∑
t=0

η3t ≤
1√
T
η3n

3
2
max

lead to Eqn. (4), and the proof is complete. �
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