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ABSTRACT

Multiple moving sound source localization in real-world scenarios
remains a challenging issue due to interaction between sources,
time-varying trajectories, distorted spatial cues, etc. In this work,
we propose to use deep learning techniques to learn competing and
time-varying direct-path phase differences for localizing multiple
moving sound sources. A causal convolutional recurrent neural net-
work is designed to extract the direct-path phase difference sequence
from signals of each microphone pair. To avoid the assignment am-
biguity and the problem of uncertain output-dimension encountered
when simultaneously predicting multiple targets, the learning target
is designed in a weighted sum format, which encodes source activity
in the weight and direct-path phase differences in the summed value.
The learned direct-path phase differences for all microphone pairs
can be directly used to construct the spatial spectrum according to
the formulation of steered response power (SRP). This deep neural
network (DNN) based SRP method is referred to as SRP-DNN.
The locations of sources are estimated by iteratively detecting and
removing the dominant source from the spatial spectrum, in which
way the interaction between sources is reduced. Experimental re-
sults on both simulated and real-world data show the superiority of
the proposed method in the presence of noise and reverberation.

Index Terms— Direct-path phase difference, multiple moving
sound source localization, direction of arrival, deep neural network.

1. INTRODUCTION

Sound source localization aims to determine the relative position of
sound sources with respect to microphone array. As an important
characteristics of directional sources, location information is widely
used in real-world applications such as human-robot-interaction, and
signal processing tasks including speech enhancement and source
separation [ 1]. Recently, more and more works focus on localization
in practical noisy and reverberant scenarios, but most of them ei-
ther localize single moving source which avoids interaction between
sources, or localize multiple static sources using long-time micro-
phone signals. The dynamic trajectories of multiple moving sound
sources pose new challenges to this task, which needs to timely esti-
mate the locations of competing sources for each required time.
Traditional methods, such as generalized cross correlation
(GCC) [2], steered response power (SRP) [3] and multiple sig-
nal classification (MUSIC) [4], are widely used for sound source
localization. To deal with the multi-source case, these methods are
sometimes combined with time-frequency (TF) processing [5-8],
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where the W-disjoint orthogonal (WDO) assumption [9] is used to
simplify the problem of multiple source localization on broadband
to that of single source localization in individual TF bins. Recently,
deep learning based methods have shown promising localization
performance [10-15]. They usually treat the localization task as
either a location classification [10-12] or a location/feature regres-
sion [13—15] problem. Location classification methods output the
posterior probabilities of location classes, but the dimension of out-
put will increase with the number of candidate locations. Regressing
the locations or features of multiple sources is difficult, because the
assignment between multiple outputs and multiple training targets
become ambiguous, and the dimension of regression output ought to
vary with the number of sound sources.

Based on the fact that sound sources move continuously over
time, many works try to exploit temporal context for moving sound
source localization [13, 16—18]. Diaz-Guerra et al. performed a
three-dimensional (3D) convolutional neural network (CNN) over
the sequence of SRP-phase transform (SRP-PHAT) spatial spectrum
to track single source [17]. Li et al. recursively estimated the direct-
path relative transfer function (DP-RTF) using a short memory for
online multiple-speaker localization [16]. Despite the progress of
these works, it still requires a method to well exploit temporal con-
text to quickly detect multiple moving sources and meanwhile filter
out the outlier estimates caused by noise and reverberation.

This paper works on taking full use of the spatial-temporal con-
text information to localize multiple moving sound sources. Con-
sidering the localization robustness of direct-path features [14, 15],
the sequence of direct-path inter-channel phase differences (IPDs) is
predicted by deep neural network (DNN) for each microphone pair.
These predicted IPDs of all microphone pairs are used to construct
the SRP spatial spectrum. This improved SRP is referred to as SRP-
DNN. The contributions of this work are summarised as follows.

Learning direct-path IPD sequence for multiple moving sources:
A causal convolutional recurrent neural network (CRNN) is de-
signed to predict the direct-path IPD sequence for each microphone
pair. This architecture fully exploits the TF patterns of direct-path
IPDs, such as the temporal smoothness due to the continuous move-
ment of sound sources, and the linearity along frequencies due to the
linear relation between IPD and time difference of arrival (TDOA).
The magnitude and phase spectrograms of dual-channel microphone
signals are taken as the network input. As for the network output, it
is difficult to well separate the direct-path IPDs of different sources
from the overlapped microphone signals. Hence, the learning target
is designed in a weighted sum format, where the weight reflects the
source activity and the summed value compounds the direct-path
IPDs. Importantly, the learned weighted direct-path IPDs can be
directly used to construct the spatial spectrum for multiple sources.
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Fig. 1. Causal CRNN architecture to estimate the sequence of direct-path phase difference.

Iterative source detection and localization: One trivial way to
perform direction of arrival (DOA) estimation is directly applying
the peak detection method [7] on the spatial spectrum , which how-
ever is inaccurate especially for the case where multiple peaks are
merged due to the interaction between sources. To solve this prob-
lem, this work proposes a new method that iteratively detects and re-
moves the dominant source from the overall spatial spectrum, which
makes it possible to separate the merged peaks.

2. METHOD

Suppose that there are multiple moving sound sources in the noisy
and reverberant environment, the signal captured by the m-th micro-
phone is formulated in the short-time Fourier transform domain as:

K
= Hu(n, f,00)Sk(n, f) + Vin(n, f), (1)

k=1
where me([l, M), k€[l, K| ne[l,N] and fe[l, F| are the in-
dices of microphones, sound sources, time frames and frequencies,
respectively.  0,=[05"°, 024]T denotes the 2D DOA of the k-th
sound source, which consists of elevation 65'°€[0, 7] and azimuth
024 c[—m, ). Here, ()7 denotes matrix/vector transpose. 65°=0
and 634 =0 are defined along the positive z-axis and the positive z-
axis, respectively. X, (n, f), Sk(n, f) and Vi, (n, f) represent the
microphone, source and noise signals, respectively. H,,(n, f, 0%)
denotes the time-varying acoustic transfer function from the k-th
source to the m-th microphone.

2.1. Classical SRP-PHAT

The classical SRP-PHAT algorithm [19] estimates the spatial spec-
trum by averaging the frame-wise GCC-PHAT over frequencies and
nonredundant microphone pairs, namely'
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where 6 denotes the candidate DOA for spatial spectrum construc-
tion. The frame-wise GCC-PHAT [20, 21] for one pair of micro-
phone signals is computed as:
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with the PHAT cross—power spectrum being:
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where wy denotes the angular frequency of the f-th frequency. 2{-}
and | - | denote the real part and magnitude of complex number, re-
spectively. For far-field model where the propagation paths from
one sound source to different microphones are regarded to be paral-
lel, the TDOA between signals captured by the m-th and the m/-th
microphones is computed as:
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with the Cartesian coordinates of the direction € on a unit sphere
being:

= [sin(0°) cos(6*™), sin(6°'°) sin(6**), cos(6°'°)]", (6)

where p,,, denotes the location coordinate of the m-th microphone
and c is the speed of sound.

u(0)

2.2. Direct-Path Phase Difference Learning

For the noise-free and anechoic single-source case, the PHAT cross-
power spectrum, i.e. Eq. (4), is actually computing the complex-
valued direct-path IPD for the source at 6:

PO (n, f) = 9 Tmm! (Ok) %)

Accordingly, the value of the frame-wise GCC-PHAT ranges from 0
to 1, and reaches the maximum when 8=0;, which is also the case
for Eq. (2). However, ambient noise and room reverberation are in-
evitable in realistic applications. In these cases, using Eq. (4), the
direct-path IPD is contaminated by noise, reverberation and inter-
fering sources, which will no doubt lead to less prominent peaks of
spatial spectrum and thus DOA estimation error. Therefore, recover-
ing the direct-path IPDs from the noisy and reverberant microphone
signals is essential for the SRP-PHAT based localization methods.

In this study, we propose to leverage the strong modeling ability
of DNN to learn the direct-path IPDs for each microphone pair. Con-
sidering the continuous moving properties of sources over time, the
TF patterns of direct-path phase differences are exploited and mod-
elled by a causal CRNN. The convolutional units capture the inter-
channel information and its short-term temporal context, and the re-
current units exploit the long-term spatial-temporal context. Overall,
the CRNN aims to filter out the contamination of acoustic interfer-
ences and recover the direct-path IPDs for multiple moving sources.
The causality of this model facilitates the online implementation of
sound source localization. The details are described as follows.

Network architecture: Signals recorded by different microphone
pairs are treated as independent training samples, and they are pro-
cessed separately by the proposed network during inference time.
The logarithm-magnitude and phase spectrograms of dual-channel
signals are taken as the input features of the CRNN. As shown in
Fig. 1, the input features are passed to ten causal convolutional mod-
ules. Each module consists of a causal convolutional layer followed
by a batch normalization (BN) and a rectified linear unit (ReLU) ac-
tivation function. A max pooling is used to compress the frequency
and time dimensions after each two convolutional modules. The
output of CNN layers is flatten for the frequency and filter dimen-
sions, and then fed into one-layer uni-directional gated recurrent unit
(GRU) with 256 hidden units. A fully connected (FC) layer with an
activation of Kmax times tanh function is used to output the direct-
path phase difference (See details in Learning target) for one micro-
phone pair. Here, Kmax refers to the maximum possible number of
sources. Note that, the frame rate of microphone signals (about 60
frames per second) is normally too high relative to the need of local-
ization frame rate (about 5 frames per second is enough). Therefore,
the input frame rate is compressed by a factor of 12 at the network
output, and n’ is used to denote the frame index of output.

Learning target: To learn the direct-path IPD (or its complex-
valued form) for the single-source case, a simple way is to directly
regress the real and imaginary parts of Eq. (7), which is expressed
in vector form with all frequencies as:



Tmm/ (ek) =

€08 (WFTmm’ (Ok)) , sin (WrTrmm/ (0k))]

[cos (w1 Tmm (0k)) ,sin (W1 Tmm (Ok)) , - -,
T o R2Fx1.

(®)
For the case of multiple sources, directly regressing multiple vectors
will require the dimension of regression output to be variant along
with the variance of the number of sound sources. In addition, there
will be the assignment ambiguity between the multiple outputs and
the multiple training targets, which is similarly encountered by the
speech separation task [22,23]. To avoid these problems, we propose
to add up the direct-path IPD vectors of multiple sound sources as
the training target, which is formulated as:

mm’ Z ﬁk:

The summation weight S (n/) is defined as the activity probabil-
ity of the k-th source at the n’-th output frame, which is computed
as, over the 12 input frames that corresponding to the n’-th output
frame, the proportion of the input frames where the k-th source is
active. It ranges from O to 1. Correspondingly, the elements of the
summed vector are in the range of [0, K]. The mean squared error
(MSE) between the network output and the learning target is taken
as the training loss.

This learning target is reasonable in the sense that taking the
inner product between this summed vector R.,,,,,,/ (') (or its predic-
tion) and the direct-path IPD vectors of candidate DOAs (denoted
as I'p,ny (0)) is equivalent to the weighted summation of the direct-
path spatial spectra (for one microphone pair) of multiple sources.
This can be interpreted by substituting Eq. (9) into the inner prod-
uct, namely:
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with the direct-path spatial spectrum for the k-th source being:

F
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2.3. DOA Estimation of Multiple Moving Sources

Using the prediction of the summed direct-path IPD vector, denoted
as Ry (n'), the overall spatial spectrum of SRP-DNN is estimated
with all microphone pairs as:
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Itis an estimation of the following theoretical value:
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Since "M~ ! Em,,mﬂ G’mm (6,n) exhibits a high peak at 0y,
and has a very small value at other directions, the value of P’ (0, n")
is dominantly contributed by the source at 6y, and is thus approxi-
mately equal to B (n’).
Multiple sources can be localized by the peak detection method
[7] which searches the significant peaks of the estimated spatial spec-
trum that are larger than a predefined threshold, as is done for regu-
lar SRP-PHAT. However, the peaks of sources may be merged due
to the interaction between sources. To solve this problem, this work

Algorithm 1: Iterative source detection and localization.

Input: The predicted direct-path IPD features {R.,,,,,,’ }.
Output: The DOA estimates {01, .. Ok}

1 for k < 1to Kmax do

2 Estimate the spatial spectrum P’ (0) with {R,,,,,,/ };

3 Estimate the DOA of the dominant source:

~d

0 «+arg maxg P'(0);

4 Remove the contribution of the dominant source:

N ~d

B P’(6"),and for all microphone pairs

Rmm’ HRmm’ 7Bd XTpym! (éd);

5 if 4 < By then

6 The dominant source at éd is inactive, k <+ k — 1,

break;
7 end

8 ék < éd;
9 end
10 return {91, ceey ék}

proposes to estimate the DOAs of active sources by iteratively de-
tecting and removing the dominant source from the overall spatial
spectrum, which is summarized in Algorithms 1. Since the iterative
method works independently for each time step, the frame index n’

~d
is omitted for simplicity. The DOA of the dominant source @ can be
easily estimated as the candidate direction having the largest value of
P’(0). According to Eq. (9), the contribution of the dominant source

~ ~d ~
can be removed by subtracting 3% X 1,/ (6") from R, ./, where

Bd is approximated by P'(éd). The new dominant source can be
detected after the contribution of the previous one is removed. The
iteration will stop when there is no notable source remained, namely
Bd < Bru. Here, Bru is a predefined threshold.

3. EXPERIMENTS AND DISCUSSIONS
3.1. Experimental Setup

Multi-conditional microphone signals are generated for network
training. Following the data generation procedure presented in [17],
the size of simulated rooms are randomly selected in the range from
3x3%x2.5 mto 10x8x6 m, and the reverberation time is randomly
set in the range from 0.2 s to 1.3 s. A 12-microphone array is ran-
domly placed inside the room, and the array geometry is set to be
the same as that mounted on the NAO robot head in the localization
and tracking (LOCATA) challenge dataset [24]. The sound source
moves along a random sinusoidal continuous trajectory. According
to these room settings, room impulse responses (RIRs) are gener-
ated using the image method [25] implemented by the gpuRIR [26].
Speech recordings are randomly selected from the LibriSpeech cor-
pus [27]. The microphone signals are created by filtering speech
recordings by the RIRs, and then adding Gaussian noise with a SNR
from 5 dB to 30 dB. In order to increase the diversity of training
acoustic conditions, each training sample is generated on-the-fly as
a random combination of data settings regarding source trajectories,
microphone positions, source signals, noise signals, reverberation
times, SNRs, etc. The evaluation is performed on both the simulated
dataset and the LOCATA dataset. The real-world data provided by
the LOCATA dataset is recorded in a computing laboratory with a
size of 7.1 x9.8x3 m. The reverberation time is 0.55 s. We consider
the development and evaluation sets of tasks 3 and 5 with a single
moving source, and also that of tasks 4 and 6 with two moving
sources for performance evaluation.
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Fig. 2. Illustration of spatial spectra of (a) SRP-PHAT [19] and
(b) SRP-DNN for two static sound sources present in the simulated
rooms with different levels of noise and reverberation. The black
crosses indicate the actual DOAs of sound sources.
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The sampling rate of microphone signals is 16 kHz. The win-
dow length and the frame shift are 32 ms and 16 ms, respectively.
The number of frequencies F' is 256. The resolution of candidate
azimuths and elevations are both 5°. During training, the length of
microphone signals is set to 20 s, and correspondingly the number
of time frames NV is 1249 which is pooled to be 104 by the net-
work. The model is trained using the Adam optimizer. The size
of mini-batch is set to 66 (equals the number of microphone pairs).
The performance for the voice-active periods is evaluated with three
metrics. The source is considered to be successfully localized if the
azimuth error is not larger than 30°. The mean absolute error (MAE)
is computed by averaging the absolute azimuth (or elevation) error
of all successfully localized sources and time frames. Miss detection
(MD) refers to source active but not detected, and false alarm (FA)
means source detected but not active. The MD rate (MDR) and the
FA rate (FAR) are computed as the percentage of MDs and FAs out
of the active sources of all time frames, respectively.

3.2. Experimental Results

Since the quality of spatial spectrum is important for the localization
performance, we first visualize the spatial spectra of the proposed
SRP-DNN method and one SRP-PHAT method [19]. Fig. 2 shows
the spatial spectra obtained in the simulated rooms with different lev-
els of noise and reverberation, where two static sources are present.
To compute the spatial spectrum, SRP-PHAT estimates the PHAT-
weighted cross-power spectrum using Eq. (4), while SRP-DNN pre-
dicts the direct-path IPDs in Eq. (7) via DNN. Under the condition
that RT0=0.4 s and SNR=15 dB, both methods exhibit sharp and
distinct peaks around the actual DOAs. When the acoustic condi-
tion becomes worse, the local peaks of the proposed method are pre-
served, while the peaks of SRP-PHAT become flat and indistinctive.
The robustness of SRP-DNN is mainly attributed to the fact that the
direct-path IPDs are well recovered by the CRNN and meanwhile
the contamination of noise and reverberation is largely reduced.
Three baseline approaches are compared with the proposed
SRP-DNN method on the LOCATA dataset, including Cross3D [17],
CTF-DPRTF [16] and SRP-PHAT [19]. Cross3D first computes
SRP-PHAT and then tracks single sound source by performing 3D
CNN on the sequence of the SRP-PHAT spatial spectrum. CTF-
DPRTF estimates the azimuths of multiple moving sources with
the predicted DP-RTFs. For the proposed SRP-DNN method, we
present the results with either peak detection (PD) or iterative source
detection and localization (IDL). For the single-source case, the
number of source is assumed to be known with K=1. For the multi-
source case, the number of source is assumed to be unknown. Kmax
and [ty are separately set to 2 and 0.2 for SRP-DNN. The setting

Table 1. Performance of different methods on the LOCATA dataset

Single-source (task 3, 5)

Multi-source (task 4, 6)

Method MDR/FAR MAE (az.|cl) MDR FAR MAE (az.el)
[%] ‘1 (%] [%] [°]
Cross3D [17] 0.9 49133 - - - |-
CTF-DPRTF [16] 2.4 38 - 176 5.8 48| -
SRP-PHAT [19] 0.8 25|25 255 12.1 2.3]4.0
SRP-DNN+PD 0.1 2527 25 79 28|37
SRP-DNN+IDL (prop.) 0.1 2527 74 4.0 2.813.7
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Fig. 3. Illustration of DOA (trajectory) estimation of (a) CTF-
DPRTE [16], (b) SRP-PHAT [19], (c) SRP-DNN+PD and (d) SRP-

DNN+IDL for one recording from the LOCATA challenge dataset.
Two moving sound sources are present in this environment.

of Bru is based on some preliminary experiments to seek a good
trade-off between MDR and FAR.

The localization results are shown in Table 1. For the single-
source case with known source number, the MDR and FAR are
equal, and PD and IDL work in the same way. SRP-DNN outper-
forms the other methods, and its MDR/FAR is extremely low. This
indicates that SRP-DNN is able to largely reduce the influence of
noise and reverberation, as which may cause spurious peaks. For
the multi-source case, SRP-DNN achieves similar MAE and much
smaller MDR and FAR compared to SRP-PHAT. This verifies that
the proposed training target, i.e. Eq. (9), can well model/preserve
the direct-path IPD information of multiple sources, moreover the
proposed CRNN model is able to well extract the target vector from
microphone signals. Relative to the trivial peak detection method,
the proposed IDL method further improves the performance by dis-
entangling the interaction of multiple sources. SRP-DNN+IDL also
performs better than CTF-DPRTF on all metrics. Fig. 3 presents
an example of localizing two moving sources. It can be seen that
SRP-DNN+IDL provides relatively less erroneous DOA estimates
(outliers) and more correct estimates, which is generally consistent
with the lower rate of FA and MD presented in Table 1.

4. CONCLUSION

This work proposes to learn competing and time-varying direct-path
phase differences for robust multiple moving sound source local-
ization. The designed causal CRNN fully exploits the TF patterns
to learn the direct-path features which encodes both direct-path
phase difference and source activity. Using the predicted direct-
path features, the SRP-DNN spatial spectrum shows more clear
peaks around actual DOAs of sources even in the adverse noisy and
reverberate scenarios. By iteratively detecting and localizing the
dominant source, the merged peaks of spatial spectrum can be sep-
arated, and accordingly the interaction between sources is reduced.
Experimental results show the advantage of the proposed method
over other methods for azimuth and elevation estimation of multiple
moving sources in both simulated and real-world environments.
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