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ABSTRACT

Initially developed for natural language processing (NLP), Trans-
former model is now widely used for speech processing tasks such
as speaker recognition, due to its powerful sequence modeling ca-
pabilities. However, conventional self-attention mechanisms are
originally designed for modeling textual sequence without consid-
ering the characteristics of speech and speaker modeling. Besides,
different Transformer variants for speaker recognition have not
been well studied. In this work, we propose a novel multi-view
self-attention mechanism and present an empirical study of differ-
ent Transformer variants with or without the proposed attention
mechanism for speaker recognition. Specifically, to balance the
capabilities of capturing global dependencies and modeling the lo-
cality, we propose a multi-view self-attention mechanism for speaker
Transformer, in which different attention heads can attend to dif-
ferent ranges of the receptive field. Furthermore, we introduce and
compare five Transformer variants with different network architec-
tures, embedding locations, and pooling methods to learn speaker
embeddings. Experimental results on the VoxCeleb1 and Vox-
Celeb2 datasets show that the proposed multi-view self-attention
mechanism achieves improvement in the performance of speaker
recognition, and the proposed speaker Transformer network attains
excellent results compared with state-of-the-art models.

Index Terms— speaker recognition, Transformer, speaker iden-
tification, speaker verification.

1. INTRODUCTION

Transformer models [1] have recently demonstrated exemplary per-
formance on a broad range of natural language processing (NLP)
tasks, such as machine translation and question answering. Com-
pared with recurrent neural networks (RNNs) and convolutional neu-
ral networks (CNNs), the advantage of self-attention in Transformer
lies in its high parallelization capabilities and global modeling capa-
bilities. Recently, there have been increasing interests in exploring
Transformers for spoken language processing, e.g., speech recogni-
tion [2, 3, 4], speech synthesis [5, 6], and speaker recognition [7, 8].

In speaker recognition, however, convolutional architectures
remain dominant, such as residual network (ResNet) [9, 10, 11]
and time delay neural network (TDNN) [12, 13]. Inspired by the
successes of self-attention in NLP, several works have tried to com-
bine CNN-like architectures with self-attention by either replacing
utterance-level pooling layers or frame-level convolutions blocks
[14, 15, 16]. Nevertheless, the overall structure of the previous work
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remains unchanged, and the application of Transformer to speaker
recognition is limited. It is an interesting topic to explore effective
ways of modeling speaker embedding with Transformer.

Applying Transformer to speaker tasks has two challenges: 1)
Transformer is hard to be scaled efficiently since acoustic features
sequences are much longer than text sentences. 2) Transformer is
deficient in some of the inductive biases inherent to CNNs, such
as translation equivalence and locality [17]. To enable Transform-
ers to model the long-duration speech and locality, we propose
a multi-view self-attention mechanism, where different attention
heads can attend to different ranges of the receptive field to boost the
capabilities of capturing global dependencies and modeling the lo-
cality. Furthermore, we present a thorough empirical exploration of
different Transformer models with different network architectures,
embedding locations, and pooling methods for speaker recognition,
equipped with our proposed multi-view self-attention mechanism.
We train the Transformer to represent speakers in a supervised
speaker classification fashion, which encourages the encoder to
capture different speaker properties by short-term or long-term de-
pendencies. Experiments on the VoxCeleb1 and VoxCeleb2 datasets
show that the proposed speaker Transformer network outperforms
other CNNs and Transformer-based networks in that it achieves
96.38% top-1 accuracy on the identification task and 2.56% equal
error rate on the verification task.

Our contributions can be summarized as follows. (1) We pro-
pose a multi-view self-attention mechanism for Transformer-based
speaker networks, which enable to capture global dependencies
and model the locality. (2) We study the proposed multi-view self-
attention mechanism in different Transformer variants with different
network structures, embedding locations, and pooling methods.

2. RELATED WORK

Transformers were proposed by Vaswani et al. [1] for machine trans-
lation, and have become the state-of-the-art method in many NLP
tasks. To apply Transformers in the context of speaker recognition,
several works study this issue.

For speaker recognition, the attention mechanism has been stud-
ied with the pooling mechanism as an alternative to aggregate tem-
poral information. Cai et al. [9] introduce a self-attentive pooling
layer to obtain the utterance-level representation. Okabe et al. [13]
propose attentive statistics pooling, which gives different weights to
different frames and generates weighted means and standard devi-
ations. Wu et al. [18] improve it by adopting a vectorial attention
mechanism. India et al. [14] present double multi-head attention
pooling, where an additional self-attention layer is added to the pool-
ing layer to enhance the attentive pooling mechanism. To improve
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Fig. 1: The proposed multi-view self-attention mechanism.

the diversity of attention heads, Wang et al. [19] propose multi-
resolution multi-head attention pooling, which incorporates differ-
ent resolutions of attentive weights. Instead of using a fixed query
for all utterances, Zhu et al. [15] introduce a self-attention mecha-
nism with an input-aware query to consider overall information and
speech dynamics over each utterance.

On the other hand, Jiang et al. [20] introduce a channel-wise
attention mechanism as a gate, which can exploit global time-
frequency information to improve the sensitivity of informative
features while suppressing less useful ones. Yu et al. [21] propose
a dynamic channel-wise selection mechanism based on the softmax
attention to gather effective information and estimate the importance
of network branches. These works utilize the attention mechanism
as a selection of channel-wise information in a block of the feature
extractor. It is of limited worth for extracting speaker embedding.

Most recently, the attention layer has been directly stacked as a
part of layers or the whole feature extractor. On the top of the x-
vectors framework [12], Shi et al. [16] apply Transformer encoders
to both frame-level and segment-level to capture features at differ-
ent scales. Zhu et al. [15] propose a serialized multi-layer multi-
head attention to obtain the final utterance-level embedding by ag-
gregating the utterance-level vectors from all heads. These works
depend on the frame-level sophisticated convolutional networks such
as TDNNBlocks [12] and SE-Res2Blocks [22]. In contrast, Safari et
al. [8] propose a tandem self-attention encoding and pooling (SAEP)
mechanism, which stacks two Transformer encoder layers followed
by an additive attention pooling. Metilda et al. [7] propose s-vectors
which stacks Transformer encoder layers followed by a statistics
pooling layer and two linear layers. However, Transformer-based
feature extractors lack the capacity to model the locality and possess
inferior performance in speaker recognition.

3. SPEAKER TRANSFORMER

3.1. Multi-View Self-Attention

We propose a multi-view self-attention mechanism for Transformer
to enhance the capabilities of capturing global dependencies while
modeling the locality. As shown in Fig 1, the multi-view self-
attention mechanism is implemented as self-attention with sliding
windows of different sizes, in which each attention head has a
different range of the receptive field.

Given the importance of local context, the proposed multi-view
self-attention mechanism employs windows with different sizes
surrounding each token. Using multiple stacked layers of such
windowed attention creates various receptive fields, where top lay-
ers have access to long-range input locations. Therefore, similar
to CNNs, it can build representations that incorporate information
across the input. Specifically, given a fixed window size w, each

token attends to 1
2
w tokens on both sides. At the l-th layer of a

Transformer encoder, the receptive field size ranges from l × wmin

to l × wmax, where wmin and wmax are the minimum and maximum
window sizes for all layers, respectively.

For different Transformer variants, it might be helpful to use dif-
ferent values of wmin and wmax for each layer to model long-term or
short-term dependencies. However, it is computationally prohibitive
to fine-tune the size of windows at each layer, because there is a vast
search space of window size as the temporal length and layer num-
ber increase. Intuitively, we simplify the selection of sliding window
for the i-th head at the l-th layer to explicitly model different ranges
of receptive fields by setting them as

wl
i =

{
2i + 1, if i ≥ 1

1, i = 0
.

Given the matrices Q, K, and V in the Transformer model [1],
the proposed multi-view attention mechanism is formulated as

Attention(Q,K, V ) =M � softmax
(
QKT

√
dk

)
V, (1)

whereM ∈ RB×H×N×N is a head-wise masking matrix,B is batch
size, H is the number of heads, N is the number of steps, and dk is
the dimension of queries and keys as mentioned in [1].

3.2. Transformer Variants

The general Transformer architecture used in machine translation [1]
consists of encoder blocks and decoder blocks. Each encoder block
contains a multi-head attention and a feedforward network, while
each decoder block has an additionally masked multi-head attention.
All of the attention modules and feedforward networks are in con-
junction with the residual connection and layer normalization.

We study five variants of the Transformer architecture for iden-
tifying speakers and extracting speaker embedding. We use an ar-
chitecture with a 6-layer encoder, a 3-layer decoder, 512 attention
size, 2048 hidden size, and 8 attention heads, which contain pa-
rameters up to 34.6 million. For all variants, the input X is firstly
processed by two one-dimensional convolutional layers (called sub-
sample encoder prenet) for downsampling to a quarter of the input
length, followed by the Transformer encoder. Downsampling acous-
tic features H accelerates the processing efficiency of a speech ut-
terance while forming coarse features to lay the base of extracting
speaker-discriminative characteristics. In the following, we intro-
duce the five variants.

(a) First Decoder Token. As shown in Fig 2a, the Transformer ar-
chitecture with an encoder and a decoder is considered as the speaker
network. Specifically, the Transformer decoder and encoder take the
[CLS] token and H as the input, respectively. In this variant, the
Transformer decoder acts as a multi-layer multi-head attentive pool-
ing and takes advantage of stacked pooling, which is helpful to gen-
erate speaker-discriminative vectors.
(b) Last Decoder Token. Similar to [23], we formulate the problem
of speaker classification as a sequence classification task. Different
from the first variant, H is both fed into the encoder and decoder.
The decoder can be considered as input-wise pooling. Then the fi-
nal step of the decoder takes [CLS] token as input and generates
speaker embedding, as shown in Fig 2b.
(c) Average Encoder Token. The naive temporal average pooling is
directly applied without frame-level and utterance-level transforma-
tions to represent speakers. The output of the Transformer encoder
is averaged to obtain speaker embedding as shown in Fig 2c.
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Fig. 2: Five Transformer variants for extracting speaker embedding.

(d) First Encoder Token. As shown in Fig 2d, [CLS] token is con-
catenated with H as the input of the encoder, and the first output of
the Transformer encoder is regarded as speaker embedding. Com-
pared with other variants that utilize all tokens of the encoder, this
variant utilizes a single token at the top layer of the encoder, which
might cause the reducing diversity of temporal information.

(e) Pooling Encoder Tokens. Following the architectural setting in
x-vector [12], a linear layer, attentive pooling, and multiple hidden
layers are sequentially stacked on the Transformer encoder, as shown
in Fig 2e. The difference between the x-vector and this Transformer
variant is that the former uses a TDNN network as the feature ex-
tractor. Compared with [7, 8], the linear transformation of inputs
and temporal pooling are replaced by the sub-sample encoder prenet
and attentive statistics pooling, respectively.

4. EXPERIMENTS

4.1. Setup

Dataset. We focus on text-independent speaker recognition and use
the VoxCeleb dataset to evaluate the performance on both speaker
identification and verification tasks. The VoxCeleb dataset, con-
taining VoxCeleb1 [24] and VoxCeleb2 [25], is a large-scale text-
independent speaker recognition dataset collected “in the wild”. The
VoxCeleb1 has over 100,000 utterances from 1,251 celebrities, while
the VoxCeleb2 has over 1,000,000 utterances from 6,112 celebri-
ties. We use the official split of VoxCeleb1 for the speaker identifi-
cation task, where the test set contains 8,251 utterances from these
1,251 celebrities. For the speaker verification task, we consider two
settings. The VoxCeleb1 with 1,211 speakers and VoxCeleb2 with
5,994 speakers are used for training, respectively. The test set con-
tains 4,715 utterances from 40 speakers in VoxCeleb1. There are
37,720 pairs of trials, including 18,860 target pairs.
Acoustic Features. In our experiments, the librosa toolkit is used to
extract 80-dimensional mel-filter banks with the 64ms window and
16ms shift to represent the speech signal. No data augmentation is

used during the training or test process. All features are subject to
200-frame utterance-level cepstral mean variance normalization. We
apply SpecAugment [26] which randomly masks 0 to 20 frames up
to twice in the time domain and 0 to 10 frequency banks up to twice.
Training and Metrics. Using fairseq [27], we train all models on
both tasks via the Adam optimizer with β1 = 0.9, β2 = 0.999, a
weight decay of 0.1, a batch of 2048, the inputs of 200 frames, and
the dropout of 0.1. We adjust the learning rate based on a 60k-step
cycle of a triangular cyclical schedule between 10−8 and 5× 10−4.
Four cycles are applied to VoxCeleb2 while 2 cycles is to VoxCeleb1
due to a smaller data size. During the test stage, speaker embeddings
are extracted from the whole speech signal. We report the top-1
accuracy (ACC) as the identification metric and the equal error rate
(EER) for verification.

4.2. Different Transformer Variants

The results of five variants with or without multi-view self-attention
(MV) are shown in Table 1, where ACC on VoxCeleb1 and EER
on VoxCeleb1 and VoxCeleb2 are reported. Except variant (d),
most Transformer variants with MV outperform those without MV,
which indicates the proposed MV is helpful to improve the perfor-
mance. Specifically, training on middle-scale corpus VoxCeleb1,
MV achieves improvements in most tasks for variants (a), (b), (c),
and (e) but slightly degrades in the verification task for variant (a)
and identification task for variant (c). As the size of the dataset
scales, the performance of speaker embedding boosts consistently
and attains 5.9%-10.3% improvement for variants (a), (b), (c), and
(e). It suggests that MV is an effective self-attention enhancement
technique that can be jointly used with other techniques such as
attentive statistics pooling in variant (e).

On the other hand, the performance of variant (d) with MV
significantly degrades regardless of the scale of datasets varies. This
variant uses the first token at the top layer of the encoder as speaker
embedding. The self-attention with different sliding window masks
forces heads on the importance of various local context, which
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Table 1: Performance of MV-based Transformer on VoxCeleb1.

Variants ACC (%) ↑ EER (%) ↓ EER (%) ↓
Vox1 + MV Vox1 + MV Vox2 + MV

(a) 94.33 94.36 5.33 5.45 2.72 2.56
(b) 93.61 94.09 5.89 5.40 2.92 2.68
(c) 92.96 91.81 6.33 6.13 3.60 3.23
(d) 92.29 88.16 5.96 7.37 3.32 3.96
(e) 95.04 96.38 4.77 4.35 2.89 2.68

makes heads learn different distributions of temporal information
and contribute unequally to extract speaker embedding. It causes
that variant (d) suffers the loss of part of the temporal information.

Except variant (d), the Transformer variants with or without MV
give the same ranking of the verification performance on the Vox-
Celeb2, i.e., (a), (e), (b), (c). Variant (c) introduces a naive tem-
poral average pooling among features derived from the Transformer
encoder, which represents the fundamental capability of identifying
the speaker. On the top of the transformer encoder, variant (a) ap-
plies multi-head attentive pooling, variant (e) applies attentive statis-
tics pooling, and variant (c) applies input-wise pooling to achieve
superior performance. Although variant (b) provides an additional
input, it is inferior to variant (a). It is probably that the additional in-
put causes over-regularization to the decoder, whose weights require
learning the mapping function from both the input and [CLS] token
to the speaker identity. By considering that the temporal standard in
the utterance-level features is complementary to the temporal aver-
age pooling, it implies that combining multi-head attentive pooling
and statistics pooling can further improve the performance.

4.3. Comparison on VoxCeleb

We compare the proposed method with several models, including
VGG [24], TDNN [12, 13], ResNet [9, 10, 11], and Transformer
[7, 8]. According to results on the VoxCeleb speaker recognition
tasks shown in Table 2, we can see that the proposed method outper-
forms most works using convolutional network or attention mecha-
nism on three speaker tasks. Compared with those methods based
on VGG, TDNN, and ResNet as the feature extractor, the proposed
Transformer encoder stacked on a sub-sample prenet attains excel-
lent performance in both ACC and EER. To the best of our knowl-
edge, the obtained ACC is the state-of-the-art performance, which
indicates that the Transformer-based speaker network possesses su-
perior capability for classification. On the other hand, our work is
inferior to the TDNN with attentive statistics pooling [13]. It is prob-
ably that the data augmentation technique increases the diversity of
training dataset, which is helpful to generalize to unseen speakers
and unseen acoustic scenes.

Regarding the feature extractor, variant (a) outperforms the
VGG with multi-head attention [14], and variant (e) achieves com-
parable performance with the TDNN equipped with attentive statis-
tics pooling [13]. It suggests that compared with several popular
CNNs, the Transformer encoder has a comparative capability to
extract frame-level features for generating speaker-discriminative
embeddings.

For the Transformer-based speaker verification, the proposed
method achieves EER of 4.35% and 2.56% when training on the
VoxCeleb1 and VoxCeleb2, respectively. We further boost the per-
formance based on [7, 8] where the Transformer encoder is applied
to extract features. For example, considering that SEAP [7] designs
a lightweight network with 1.60 million parameters, one reason for
the improvement of the proposed method is the model scaling. Re-

Table 2: Performance comparison on the VoxCeleb1 test Set.

Training on VoxCeleb1 development
Implementaion Extractor ACC (%) EER (%)

VGG-M [24] VGG 80.5 7.8
X-vector [12] TDNN - 7.83
Atten. Stats.*[13] TDNN - 3.85
Cai et al. [9] ResNet 89.9 4.46
Chung et al. [11] ResNet 89.0 5.26
SAEP [8] Transformer - 7.13
S-vectors [7] Transformer - 5.50

Our work (e) CNN+Transformer 96.38 4.35

Training on VoxCeleb2 development
MHA [14] VGG 3.19
Atten. Stats. [13] TDNN 2.59 [18]
Xie et al. [10] ResNet 3.22
SAEP [8] Transformer 5.44
S-vectors*+[7] Transformer 2.67

Our work (a) CNN+Transformer 2.56
Our work (e) CNN+Transformer 2.68
* Training using data augmentation.
+ Training dataset includes VoxCeleb2 and VoxCeleb1 dev set.

gardless of the small size, it often does not scale effectively as the
length of inputs increases. Therefore, the sub-sample prenet is em-
ployed in our work, which leads to a significant reduction in terms
of storage size, processing, and memory. S-vectors [8] trained on the
VoxCeleb1 and VoxCeleb2 development sets and data augmentation
is inferior to the proposed method. It suggests several architectural
enhancements to the Transformer-based speaker network such as at-
tentive pooling, multi-head pooling, and multi-layer pooling.

5. CONCLUSION

In this work, we explore five Transformer variants for speaker recog-
nition. A multi-view self-attention mechanism is proposed to bal-
ance the capabilities of capturing global dependencies and modeling
the locality by using sliding windows with different sizes for each at-
tention head. The proposed attention mechanism achieves improve-
ments on most variants for both speaker identification and speaker
verification tasks. Moreover, the proposed model attains excellent
results compared to several previous CNN-based and Transformer-
based models. Our method achieves 96.38% top-1 accuracy for the
speaker identification task on Voxceleb1, which is state-of-the-art to
the best of our knowledge, and 4.35% and 2.56% EER on VoxCeleb1
and VoxCeleb2, respectively, for the speaker verification task. In the
future work, we will utilize larger datasets by pretraining techniques
[28, 29] and employ data augmentation techniques [30, 31] to further
boost the performance.
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