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ABSTRACT
Finding equitable partitions is closely related to the extraction of

graph symmetries and of interest in a variety of applications context
such as node role detection, cluster synchronization, consensus dy-
namics, and network control problems. In this work we study a blind
identification problem in which we aim to recover an equitable parti-
tion of a network without the knowledge of the network’s edges but
based solely on the observations of the outputs of an unknown graph
filter. Specifically, we consider two settings. First, we consider a
scenario in which we can control the input to the graph filter and
present a method to extract the partition inspired by the well known
Weisfeiler-Lehman (color refinement) algorithm. Second, we gener-
alize this idea to a setting where only observe the outputs to random,
low-rank excitations of the graph filter, and present a simple spec-
tral algorithm to extract the relevant equitable partitions. Finally, we
establish theoretical bounds on the error that this spectral detection
scheme incurs and perform numerical experiments that illustrate our
theoretical results and compare both algorithms.

Index Terms— Equitable partitions, Weisfeiler Lehman algo-
rithm, spectral analysis, topology inference, graph symmetry

1. INTRODUCTION

Networks have become a powerful abstraction for complex sys-
tems [1, 2]. To comprehend such networks, we often seek patterns
in their connections, which would allow us to comprehend the sys-
tem in simpler terms. A common theme is to divide the nodes—and
by extension the units of the underlying system—into groups of
similar nodes. For instance, in the context of community detection,
we consider nodes as similar if they are tightly-knit together, or
share similar neighborhoods [3]. This notion of node similarity is
thus bound to the specific position of the nodes in the graph, i.e.,
the identity of their neighboring nodes. In contrast, we may want to
split nodes into groups according to whether they play a similar role
in the graph [4], irrespective of their exact position. As an example,
consider a division into hubs and peripheral nodes according to
their degree, a split for which the exact identity of the neighboring
nodes is not essential. While in this specific example defining a
degree-similarity measure between nodes is simple, how to define a
similarity measure between nodes in a position independent manner
is a non-trivial question in general.

Rather than trying to identify similar nodes, many traditional ap-
proaches in social network analysis consider the definition of nodes
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roles based on exact node equivalences, such as regular equivalence
or automorphic equivalence [5]. A specific form of such a partition
into exact node equivalence classes is an equitable partition (EP),
which may be intuitively defined recursively as sets of nodes that
are connected to the same number of equivalent nodes. These EPs
generalize orbit partitions related to automorphic equivalence and
are thus closely related to graph symmetries. Knowledge of EPs
can thus, e.g., facilitate the computation of network statistics such
as centrality measures [6]. As they are associated to certain spec-
tral signatures, EPs are also relevant for the study of dynamical pro-
cesses on networks such as cluster synchronization [7, 8], consensus
dynamics [9], and network control problems [10].

Motivated by this interplay between network dynamics and EPs,
in this work we ask the question: Can we detect the presence of an
EP in a network solely based on a small number of nodal observa-
tions of a dynamical process acting on the network? For this, we
adopt a graph signal processing perspective [11], in which we model
the dynamics as a graph signal filtered by an unknown filter repre-
senting the dynamics. Our task is then to recover the EP solely based
on a small number of outputs of this filter.
Related work. Network topology inference has been studied exten-
sively in the literature [12, 13]. Inferring the complete topology of
a network can however require a large number of samples and may
thus be infeasible in practice. A relatively recent development is
the idea to bypass this inference of the exact network topology and
directly estimate network characteristics in the form of community
structure [14, 15, 16] or centrality measures [17, 18, 19] from graph
signals. Learning graph characteristics directly in this way benefits
from a better sample complexity, since only a low-dimensional set
of spectral features must be inferred rather than the whole graph.
This manuscript falls squarely within this line of work, but focuses
on EPs as a different network feature, which results in some distinct
challenges. Specifically, we cannot rely on the estimation of a dom-
inant invariant subspace, but must estimate and select a subset of
relevant eigenvectors from the whole spectrum of the graph.
Contributions and outline. We present two algorithms to tackle the
problem of extracting the coarsest EP from the observation of graph
signals under two different scenarios. First, we consider a scenario
where we can control the input to the (unknown) graph filter, while
having no access to the graph. We present an algorithm that exactly
recovers the coarsest EP in this setting. Second, we consider a fully
“blind” estimation problem, where we only have access to noisy,
random, low-rank excitations of the graph filter. For this we derive
a simple spectral algorithm and derive theoretical error bounds for
its performance under certain assumptions. Finally, we illustrate our
results and compare the two algorithms.

2. NOTATION

Graphs. A simple graph G = (V,E) consists of a set of nodes
V and a set of edges E = {uv | u, v ∈ V }. The neighborhood
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Fig. 1: Examples of graphs where the structural eigenvectors of the
cEP behave irregularly. The depicted graphs are loopy to make the
examples small. However, we can think of this as the condensed
graphs Aπ of some larger simple graph. (a) [1, 1, 1, 1, 2, 2] is the
perron vector of the graph. However, the cEP has 6 classes. (b) This
graph also only has one EP, but the adjacency matrix is singular.
Therefore, an eigenvector with eigenvalue 0 is part of the cEP.

N(v) = {x | vx ∈ E} of a node v is the set of all nodes connected
to v. A graph is undirected if uv ∈ E ⇐⇒ vu ∈ E. We may
consider more general (non-simple) graphs that allow for directed
edges, self loops vv ∈ E, or assign positive weights w : E → R+

to the edges of the graph, rendering it a weighted graph.
Matrices. For a matrix M , Mi,j is the component in the i-th row
and j-th column. We use Mi, to denote the i-th row vector of
M and M ,j to denote the j-th column vector. The span of a ma-
trix M ∈ Rn×m is defined as the set span(M) = {x ∈ Rn |
x = Mv for some v ∈ Rm}. For a matrix X , we denote by X ∈
span(M) if X ,j ∈ span(M) for all j. In is the identity matrix
and 1n the all-ones vector of size n respectively. Given a graph
G = (V,E), we identify the set of nodes with {1, . . . , n}. An ad-
jacency matrix of a given graph is a matrix A with entries Au,v = 0
if uv /∈ E and Au,v = w(uv) otherwise, where we set w(uv) = 1
for unweighted graphs for all uv ∈ E.
Equitable partitions. A partition C = {C1, ..., Ck} of a graph into
k classes splits the nodes into disjoint sets Ci such that Ci ∩Cj = ∅
for i 6= j and V =

⋃
i Ci. An equitable partition (EP) is a partition

such that within each class Ci the neighborhood of each node is
partitioned into parts of the same size for all classes Cj . Formally,
in an EP it holds for all nodes v, u ∈ Ci in the same class that:

|{N(v) ∩ Cj}| = |{N(u) ∩ Cj}| for all j ∈ {1, ..., k}. (1)

A standard algorithm to detect EPs is the Weisfeiler-Lehman algo-
rithm [20], a combinatorial algorithm which iteratively refines a col-
oring of the nodes until a stable coloring is reached. It finds the
coarsest EP (cEP), meaning that with the fewest classes. Note that
it is typically this cEP one aims to find, as it provides the largest
reduction in complexity for describing the structure of the graph.
Furthermore, any graph will have a trivial finest EP with |V | classes.

3. EQUITABLE PARTITIONS AND EIGENVECTORS

In this section we recap how the presence of an equitable partition
manifests itself in the spectral properties of the adjacency matrix. We
will subsequently use these spectral properties to detect the presence
of a cEP from the output of a graph filter.

Throughout the paper, we consider an undirected graph G with
a cEP that has k classes encoded by the indicator matrix H with
entries Hij = 1 if i ∈ Cj and Hij = 0 otherwise. It now holds that

AH = H(H>H)−1H>AH =: HAπ (2)

whereAπ is the adjacency matrix of the so-called quotient graph as-
sociated to the EP. Note that Aπ is not necessarily simple nor undi-
rected. The converse of eq. (2) also holds. If there exists an indicator
matrix H ∈ {0, 1}n×k as defined above and AH = HAπ , then the
graph has an EP with k classes as indicated by H .
Spectral signatures of EPs The algebraic characterization of EPs in
terms of Equation (2) has some noteworthy consequences. First, the
eigenvalues of Aπ are a subset of the eigenvalues of A. Second, the
eigenvectors ofAπ can be scaled up byH to become eigenvectors of
A. Both of these statements are implied by the following argument:
Let Aπv = λv define an eigenpair of Aπ , then AHv = HAπv =
λHv is an eigenpair of A.

Thus, A has k (unnormalized) eigenvectors of the form z = Hv
that are by construction block constant on the classes of the EP. We
call these eigenvectors ofA associated with the cEP structural eigen-
vectors. As A is symmetric, these eigenvectors form an orthogonal
basis of a closed subspace. Moreover, as the structural eigenvectors
are block-wise constant, the same subspace is also spanned by the
indicator vectors of the classes, i.e., the columns of H .

This motivates the following intuitive idea to find the cEP spec-
trally by analyzing the eigenvectors of the adjacency matrix A: Find
the smallest number k of eigenvectors that are block constant on the
same k blocks. The vectors indicating the blocks of these eigenvec-
tors will then correspond to the columns of the indicator matrix H
for the cEP of the graph.

Since any structural eigenvector is of the form z = Hv, we
may even hope to find the cEP by simply computing a single struc-
tural eigenvector, provided that the entries of the eigenvector v of
the quotient graph are all distinct. Given such an eigenvector z, we
could then simply read off the node-equivalences classes by check-
ing whether or not two nodes are assigned the same value in the vec-
tor z. In fact, we can always identify at least one structural eigenvec-
tor of the cEP easily using the following proposition, which follows
from the non-negativity of the adjacency and the algebraic charac-
terization of the cEP given above.

Proposition 1. If the Perron vector (dominant eigenvector) of a
graph is unique, then it is a structural eigenvector.

However, there are several obstacles to implement the above al-
gorithmic idea. First, even if we are given a structural eigenvector of
the cEP, simply grouping the nodes according to their entries in the
eigenvector may not reveal the cEP. For instance, focussing only on
the Perron vector may not yield the correct cEP, as nodes in different
classes may still be assigned the same value. Second, the eigenvec-
tors associated to the cEP may be associated to any eigenvalue of A,
i.e., they are not necessarily the dominant eigenvectors of A.

Both of these problematic cases are shown in Figure 1. Fig-
ure Figure 1a provides an example where the dominant eigenvector
(Perron vector) has fewer than k distinct entries. Figure Figure 1b
shows an eigenvector of the cEP with small eigenvalues (in this case
zero). While there area thus always exactly k structural eigenvectors
of the cEP, we must first determine which eigenvectors are indeed
structural eigenvectors of the cEP and which are not.

4. SCENARIO I: BLIND BUT IN CONTROL

In the following, we consider a setup in which we cannot see the
graph directly, but can sample the input/output behavior of a graph
filter in form of a matrix polynomial f(A) =

∑
k hkA

k, where
hk ∈ R are filter coefficients. To illustrate our main ideas, we will
restrict ourselves for this section to the simplest case, where f(A) =



Algorithm 1: BlindWL

1 O ← oracle returning Ax;
2 B ← 1|V |; / start with global partition indicator matrix;
3 while O(B) /∈ span(B) do
4 for i, j ∈ V do

5 Bi,j ←

{
1 if O(B)i, = O(B)j, ∧Bi, = Bj,

0 else
6 end
7 remove redundant columns from B

8 end
9 return B / return coarsest equitable partition

A and we can control the input to the filter. In Section 5 we will then
concern ourselves with a fully “blind” cEP inference problem, where
we have no control over the inputs.

For now let us assume we observe the outputs y = Ax ∈ Rn to
a set of inputs x we can choose. Clearly, we could reconstruct the
whole graph using sufficiently many inputs localized at single nodes,
since Y = AIn. However, if we simply aim to identify a cEP with a
relatively small number of classes, considerably fewer inputs suffice.

Our idea here is to use input/output behavior as an oracle to sim-
ulate the well-known Weisfeiler Lehman algorithm (WL) [20], also
known as color refinement. Starting from an initial coloring c(0) at
time t = 0 (usually the same color for all nodes), the WL algorithm
updates the color of each node v iteratively as follows:

c(t+1)(v) = hash
(
c(t)(v), {{c(t)(x) | x ∈ N(v)}}

)
where the doubled brackets denote a “multi-set”, i.e. a set in which
an element can appear more than once. Here the hash function is
an injective function and ensures that nodes that have (i) the same
color in previous iteration t and (ii) the same set of colors in their
neighborhood, are assigned the same color in the next iteration t+1.
Evidently, every step of the algorithm refines the coloring until at
some point the partition of the graph induced by the colors stays the
same. At this point, all nodes within the same class have the same
number of neighbors to each class, i.e., the algorithm found an EP —
the cEP to be precise [21]. Using the oracle for y = Ax, we present
a “blind” version of the WL algorithm in Algorithm 1. A similar
algorithm was proposed by [22] for the computation of fractional
isomorphisms based on conditional gradients.

Note that, since we are only interested in nodes with exactly the
same colors in their neighborhood, we need only remember if the
multi-set is exactly the same or not. A common approach in practice
is thus to create an implicit hash function via a dictionary that is
indexed by the (sorted) multi-sets. Computing the hash of a multi-
set then consists of checking whether it is already in the dictionary.
If so, one returns the color value stored in the dictionary. If not, the
number of entries of the dictionary is stored indexed by the multi-set
and returned. This way, distinct multi-sets receive distinct values,
but the same multi-set will continue receiving the same value.
Properties of the blindWL algorithm. It is relatively easy to see
that Algorithm 1 indeed finds the coarsest equitable partition. After
termination, AB ∈ span(B), meaning that there exists some matrix
Aπ with AB = BAπ . Furthermore, consider the cEP represented
by H∗. Throughout the execution, if B = H∗Bπ ∈ span(H∗),
then AB = AH∗Bπ = H∗AπBπ ∈ span(H∗). Since 1|V | =
H∗1|H∗|, B stays in span(H∗) and B eventually represents the
same EP as H∗.

In fact, Algorithm 1 induces the same partitions as the WL al-
gorithm in each iteration of the while loop: we start with the same
color for all nodes, as encoded in the all ones vector. If the number of
neighbors of a certain color c is different for two nodes u, v the WL
algorithm will put them in two different classes. The corresponding
components (AB)u,c 6= (AB)v,c will also be distinct. Hence, in the
next iteration, Bu,v = 0 meaning u and v are also put into distinct
classes by the blind WL algorithm.

A benefit of the blindWL algorithm is that the intermediate row
representations (AB)i, of a node i yield an embedding each itera-
tion rather than colors that, if distinct, provide no method of com-
parison. For example one can cluster these embeddings to obtain an
even coarser partition into nodes that are similar. This circumvents
the sensitivity of the WL algorithm to minor perturbations in the
graph: indeed, adding a single edge can disrupt an exact symmetry
and yields a much finer cEP. While crucial to the original application
of the WL (graph isomorphism checking), a more robust approach
to assigning the classes is useful for node role extraction and the
completely blind problem setting (section 6).

While the proposed algorithm is not as efficient as the actual WL
algorithm (which has been thoroughly optimized), it does offer a per-
spective that can help with detecting other EPs, rather than simply
the coarsest EP. Suppose a graph has multiple distinct EPs, and the
cEP is found by the WL algorithm, and the blindWL algorithm start-
ing from the all-ones-vector. Note that the blindWL algorithm finds
the smallest subspace spanned both by a basis consisting of eigen-
vectors and a basis consisting of block-standard vectors. We know
that the all-ones vector must always be part of this subspace, since
H1k = 1n. When trying to find a finer EP, we need to choose a
different set of starting vectors. Reasonable candidates can be found
by taking an eigenvector that is not a structural eigenvector of the
cEP, but that is nonetheless block constant on some nodes, and using
the indicator vectors of its blocks.

Assuming that this candidate vector x is in the finer EP, the
blindWL algorithm will find the whole EP.

5. SCENARIO II: TRULY BLIND IDENTIFICATION OF
EQUITABLE PARTITIONS

We now consider a scenario in which we aim to infer the cEP, but
merely observe the outputs of a graph filter excited by a noisy, ran-
dom low-rank excitation over which we have no control.

y = αf(A)H̃x+ (1− α)z. (3)

Here x ∼ N (0, Ik) and z ∼ N (0, In) are jointly Gaussian inde-
pendent random vectors that are each sampled i.i.d from a normal
distribution, α ∈ [0, 1] is a parameter that regulates how strongly
the structural eigenvectors are excited, and H̃ = H diag(1/

√
|Ci|).

For simplicity, we assume that f(A) and f(A)2 have the same cEP
indicated by H as A. Though this seems restrictive, for generic
graphs most filters will fulfill this requirement. Indeed, the cEP ofA
is always an EP of Ak as well, though it may not be the coarsest.

Now observe that the covariance matrix of the above process has
the following form:

Σ = E[yyT ] = PΓPT = α2f(A)H̃H̃T f(A)T + (1− α)2In

Because f(A) has an cEP as indicated by H , for any eigenvector



f(Aπ)v = λv, associated to a structural eigenvector we have:

ΣHv = α2f(A)H̃H̃T f(A)Hv + (1− α)2InHv

= α2f(A)H̃H̃THf(A)πv + (1− α)2Hv

= α2f(A)Hf(A)πv + (1− α)2Hv

= α2H(f(A)π)2v + (1− α)2Hv

= (α2λ2 + (1− α)2)Hv,

where we have used that H̃H̃TH = H . Hence, the structural eigen-
vectors of Σ are the same as the structural eigenvectors of f(A),
which are scaled-up, block constant eigenvectors of f(Aπ). Now, let
f(A) = V ΛV T denote the spectral decomposition of the (symmet-
ric) matrix f(A), and denote by VEP the subset of structural eigen-
vectors.

If we consider the cEP C∗ = {C∗1 , ..., C∗k} associated to f(A)
and define the k-means cost function:

F (C, V ) =
∑
C∈C

∑
i∈C

∥∥∥∥∥Vi, − 1

|C|
∑
j∈C

Vj,

∥∥∥∥∥
2

2

(4)

it is easy to see that F (C∗, VEP) = 0, as the eigenvectors of f(A) are
block-wise constant on the classes of the cEP.

Hence, if we had access to (a good estimate of) the covariance
matrix Σ, we could simply use k-means to find candidates for the
cEP, provided we can supply the correct eigenvectors V to the al-
gorithm. As the above calculations show, the parameter α regulates
the scale of the eigenvalues associated to the structural eigenvectors.
For sufficiently large values of α most structural eigenvectors will,
in fact, be the dominant eigenvectors. Assuming that we know the
number of classes k of the cEP to be found, we may thus simply
pick the top k eigenvectors of Σ and optimize the k-means objec-
tive to obtain the blocks of the EP — a procedure akin to spectral
clustering. Here we estimate the covariance matrix by the sample
covariance based on sampled outputs yi for i ∈ 1, . . . , s:

Σ̂ =
1

s

s∑
i=1

yiy
T
i = P̂ Γ̂P̂T

For this setup we can show the following result.

Theorem 1. Let Σ̂−Σ = ∆ and let y1, ..., ys ∈ Rn be independent
samples from the graph filter as in eq. (3) and let r = Tr(Σ)/ ‖Σ‖2.
Let the following conditions hold:

1. KMeans finds a partition Ĉ = {Ĉ1, ..., Ĉk} that minimizes
F (Ĉ, P̂EP).

2.
∥∥yi∥∥2

2
≤ KE[‖y‖22] is bounded almost surely.

3. There exists δ > 0 s.t. ‖∆‖+ δ ≤ γk − γ̂k+1.

Then, for c > 0 and with probability at least 1− c:

√
F (Ĉ, VEP) ≤

√
8k ‖Σ‖2 Θ

(√
K2r log(n/c)

s
+ K2r log(n/c)

s

)
δ

for some constant Θ.

The proof of the theorem can be found in the full version avail-
able here. It is inspired by [14, 23] and uses a concentration inequal-
ity and the Davis Kahan sin(θ) theorem. The theorem itself bounds

the error of the partition found by the simple spectral clustering algo-
rithm. The consistency statement that in the limit s → ∞ the error
vanishes and the extraction of the cEP is exact immediately follows.

A similar statement can be made about an adjusted variant of the
blindWL algorithm applied to the estimated covariance matrix Σ̂.
We can simply replace the exact equality conditions in the compu-
tation of the intermediate matrix B in Algorithm 1 with a clustering
algorithm that allows for some variance. In the limit s → ∞, the
error of the approximate oracle Σ̂x goes toward 0:

∥∥∥Σ̂x− Σx
∥∥∥ =

‖∆x‖ → 0. Therefore, the adjusted blindWL algorithm also ex-
actly recovers the cEP with infinitely many samples. In the next sec-
tion we explore numerically how the two algorithms compare with
finitely many samples.

6. EXPERIMENTS

In this section we perform some experiments that support the theo-
retical findings of this paper. Toward this end, we use the setup as
described in section 5, eq. (3). While the proposed spectral algorithm
of section 5 is fit for the task, the blindWL algorithm (1) must be al-
tered slightly as indicated above. In particular, we no longer have
control over the inputs, thus the oracle O for y = Ax is replaced
with an approximate oracle ŷ = Σ̂x.

Accordingly, we use a (robust) version of the algorithm, in
which we replace the exact equality check in line 5 in algorithm 1
and instead fit a gaussian mixture on the rows ofO(B). The adjusted
algorithm then uses the indicator vectors of the found clusters as the
new intermediate B. We note that in the scenario of section 4, both
variants of the algorithm yield the same result (under the assumption
that the clustering algorithm fits the data optimally).

The graphs used in our synthetic test are sampled from a locally
colored configuration model [24]. As opposed to the original config-
uration model, in the locally colored configuration model, the edge
stubs also specify what color the incident nodes should have. Specif-
ically, each node in the model has two main sets of parameters: an
assignment to a (color) class and a number of colored stubs with
which the node is required to link to other classes (which amounts to
specifying a partition indicator matrix H and a quotient graph Aπ).
Given that the desired constraints can be met, we obtain a simple
graph without self-loops or multi-edges. Stated differently, using
the locally colored configuration model, we can fix the number of
colored neighbors for each node and thus guarantee that the sampled
graph has an EP AH = HAπ . For more details we refer the reader
to the code available here.

In the experiments, graphs with 300 nodes and an EP with
6 same sized classes were used. In each experiment, we ran-
domly sampled a symmetric matrix Aπ uniformly from the integers
{0, ..., 4}6×6. Subsequently, we sampled the matrix A, generated s
outputs yi (for i ∈ 1, . . . , s) and evaluated the algorithms.

We measure the performance of both algorithms using graph-
level accuracy, that is, an output partition receives a score of 1 if it is
exactly equivalent to the planted partition; else the score is 0. Note
that this is a quite strict measure, as a correct class assignment for all
but one node is still counted as a complete failure to recover the EP.
As a second, node-level measure, we use the cost function F (Ĉ, VEP)
as defined in eq. (4), which can give insight into the quality of wrong
partitions. Both measures are reported as the mean score over 1000
repeated experiments for each of the parameter configurations shown
in Figure 2.

In the right plot of Figure 2, a rapid decrease in the cost func-
tion and a slightly less steep increase in the accuracy can be seen

https://git.rwth-aachen.de/netsci/blind-extraction-of-equitable-partitions-from-graph-signals
https://git.rwth-aachen.de/netsci/blind-extraction-of-equitable-partitions-from-graph-signals


Fig. 2: Graph-level and node-level performance of the algo-
rithms. The figure shows the graph-level accuracy on the right axis
(continuous line) and the node-level cost function F (Ĉ, VEP) on the
left axis (dashed line) of each graph. It also shows the progression
of these metrics with fixed sample size s = 300 and varying noise
parameter α (left), and with fixed α = 0.7 and varying s (right).

for increasing sample size, which underlines our theoretical findings
in Theorem 1. Though quite close in the node-level measure, the
blindWL algorithm already has considerably higher accuracy using
only few samples.

In the left plot of Figure 2 and with no noise at all, both algo-
rithms find the correct partitions. However, the blindWL algorithm
is again more robust when increasing the noise. The fact that the
algorithms do not converge to the same score at α = 0 can be ex-
plained by the distinct clustering methods. While KMeans always
finds 6 clusters the gaussian mixture used in the blindWL can use
less than 6 components in the mixture. This should also be kept in
mind when comparing the two algorithms, as KMeans requires the
number of classes as input, whereas the blindWL algorithm can infer
the number of classes from the data.

7. CONCLUSION

We presented approaches to blindly extracting structural information
in the form of an equitable partition of an unobserved graph from
only such graph signals. In theorem 1, we established a theoretical
bound on the error of such an inferred partition and went on to com-
pare the spectral clustering and blindWL approaches experimentally.
An interesting direction for future research may be to exploit this no-
tion of node roles, e.g., the quotient structure may be employed for
faster computations of certain graph filters.
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9. APPENDIX

9.1. Proof of Proposition 1

Proposition 1: If the Perron vector (dominant eigenvector) of a
graph is unique, then it is a structural eigenvector.

Proof. Let G be a graph with adjacency matrix A and its cEP indi-
cated by H , that is, AH = HAπ . Consider the dominant eigenpair
(λ1, v1) of A. It holds, that:

v1 = lim
t→∞

Atx

‖Atx‖

for some x, that is not perpendicular to v1. Take x = 1n = H1k.
The all-ones vector 1n is not perpendicular to v1, since the dominant
eigenvector of a non-negative matrix is non-negative and positive in
at least one component. Therefore:

v1 = lim
t→∞

At1n
‖At1n‖

= lim
t→∞

AtH1k

‖At1n‖
= lim
t→∞

H(Aπ)t1k
‖At1n‖

Then v1 = Hvπ1 and is thus a structural eigenvector.

9.2. Proof of Theorem 1

Theorem 1. Let Σ̂−Σ = ∆ and let y1, ..., ys ∈ Rn be independent
samples from the graph filter as in eq. (3) and let r = Tr(Σ)/ ‖Σ‖2.
Let the following conditions hold:

1. KMeans finds a partition Ĉ = {Ĉ1, ..., Ĉk} that minimizes
F (Ĉ, P̂EP).

2.
∥∥yi∥∥2

2
≤ KE[‖y‖22] is bounded almost surely.

3. There exists δ > 0 s.t. ‖∆‖+ δ ≤ γk − γ̂k+1.

Then, for c > 0 and with probability at least 1− c:

√
F (Ĉ, VEP) ≤

√
8k ‖Σ‖2 Θ

(√
K2r log(n/c)

s
+ K2r log(n/c)

s

)
δ

for some constant Θ.

Proof. Define the indicator matrices

Ĥ = H diag
({√

|C| | C ∈ Ĉ
})

H∗ = H diag
({√

|C| | C ∈ C
})

It becomes apparent that:∥∥∥P̂EP − ĤĤT P̂EP

∥∥∥2
F

= F (Ĉ, P̂EP)

and by condition 1, Ĥ minimizes the expression. Similarly,∥∥∥VEP −H∗(H∗)TVEP

∥∥∥2
F

= F (C∗, VEP) = 0

In the following the aim will be to bound√
F (Ĉ, VEP) =

∥∥∥VEP − ĤĤTVEP

∥∥∥
F

As a shorthand, define the error matrix E = VEPV
T

EP − P̂EPP̂
T
EP. The

following inequalities hold:∥∥∥VEP − ĤĤ>VEP

∥∥∥
F

=
∥∥∥(I − ĤĤ>)VEP

∥∥∥
F

=
∥∥∥(I − ĤĤ>)VEPV

>
EP

∥∥∥
F

=
∥∥∥(I − ĤĤ>)(P̂EPP̂

>
EP + E

)∥∥∥
F

≤
∥∥∥(I − ĤĤ>) P̂EPP̂

>
EP

∥∥∥
F

+
∥∥∥(I − ĤĤ>)E∥∥∥

F

≤
∥∥∥(I − ĤĤ>) P̂EPP̂

>
EP

∥∥∥
F

+ ‖E‖F

where the second equality stems from the fact that V is unitary and
the frobenius norm is invariant under unitary operations. In the same
vein, the last equality is a consequence of (I − ĤĤT ) being a pro-
jection matrix and therefore also having no influence on the norm.
Now, since Ĉ minimizes F (C, P̂EP) going to the ground-truth parti-
tion will actually increase the cost:∥∥∥(I − ĤĤ>) P̂EPP̂

>
EP

∥∥∥
F

+ ‖E‖F

≤
∥∥∥(I −H∗ (H∗)

>
)
P̂EPP̂

>
EP

∥∥∥
F

+ ‖E‖F

=
∥∥∥(I −H∗ (H∗)

>
)(

VEPV
>

EP − E
)∥∥∥

F
+ ‖E‖F

≤
∥∥∥(I −H∗ (H∗)

>
)
VEPV

>
EP

∥∥∥
F

+ 2‖E‖F

=
√
F (C∗, VEP) + 2‖E‖F

= 2‖E‖F

To now bound the error ‖E‖F we change the norms by the following
lemma:

Lemma 1 ([25], Lemma 7). For any A,B ∈ Rm×n with m ≥ n
and ATA = BTB = In, it holds that:∥∥∥AAT −BBT∥∥∥2

F
≤ 2n

∥∥∥AAT −BBT∥∥∥2
2

It directly follows that:√
F
(
Ĉ, V

)
≤ 2
√

2k ‖E‖2

We now need to bound the error term E = VEPV
T

EP − P̂EPP̂
T
EP. Since

the first term consists of the eigenvectors of the cEP of A, which
are by assumption the same as the eigenvectors of the cEP of A2,
which are, in turn, the same as the eigenvectors of Σ, we have E =

PEPP
T
EP − P̂EPP̂

T
EP. As a direct consequence of [26, Theorem 2.6.1]

this, in turn, can be rewritten as:

‖E‖2 =
∥∥∥PEPP

T
EP − P̂EPP̂

T
EP

∥∥∥
2

=
∥∥∥P̂TEPPEP

∥∥∥
2

We continue the proof by applying a variant of the Davis Kahan sin
θ theorem to show that:

∥∥∥P̂TEPPEP

∥∥∥
2
≤

∥∥∥P̂TEP∆PEP

∥∥∥
2

δ
≤
‖∆‖2
δ



The second inequality is obvious as the matrices except ∆ are or-
thogonal and therefore do not increase the largest eigenvalue. For the
first inequality, consider the decomposition of the covariance matrix:

Σ = PΓPT = PEPΓEPP
T
EP + PEPΓEPP

T
EP

The estimated covariance matrix is also decomposed in the same
way. Now, it holds that:

∆PEP = (Σ + ∆)PEP − ΣPEP

= Σ̂PEP −
(
PEPΓEPP

T
EP + PEPΓEPP

T
EP

)
PEP

= Σ̂PEP − PEPΓEP

Furthermore:

P̂TEP∆PEP = P̂TEPΣ̂PEP − P̂TEPPEPΓEP

= Γ̂EPP̂
T
EPPEP − P̂TEPPEPΓEP

We will now use a trick to center the eigenvalues of Γ around 0: Let
c = (γ1 + γk)/2 and d = (γ1 − γk)/2. By the triangle inequality:∥∥∥PTEP∆PEP

∥∥∥
2

=
∥∥∥Γ̂EPP̂

T
EPPEP − P̂TEPPEPΓEP

∥∥∥
2

=
∥∥∥(Γ̂EP − cIn

)
P̂TEPPEP + cIP̂TEPPEP

− P̂TEPPEP

(
ΓEP − cIn

)
− P̂TEPPEPcIn

∥∥∥
2

=
∥∥∥(Γ̂EP − cIn

)
P̂TEPPEP

− P̂TEPPEP

(
ΓEP − cIn

)∥∥∥
2

≥
∥∥∥(Γ̂EP − cIn

)
P̂TEPPEP

∥∥∥
2

−
∥∥∥P̂TEPPEP

(
ΓEP − cIn

)∥∥∥
2

As Γ is a diagonal matrix and γi − c ∈ [−d, d] for i ∈ {1, ..., k}, it
holds that ‖ΓEP − cIn‖2 ≤ d. Applying this yields:∥∥∥P̂TEPPEP

(
ΓEP − cIn

)∥∥∥
2
≤ d

∥∥∥P̂TEPPEP

∥∥∥
2

Using the same logic, and by condition 3, γ̂i− c ∈ [−∞,−(d+ δ)]

for i ∈ {k + 1, ..., n}. Thus,
∥∥∥Γ̂EP − cIn

∥∥∥
2
≥ (d + δ). Applying

this to the norms, it holds that:∥∥∥(Γ̂EP − cIn
)
P̂TEPPEP

∥∥∥
2
≥ (d+ δ)

∥∥∥P̂TEPPEP

∥∥∥
2

Subtracting the right-hand side of the equations from one another,
we end up with the inequality:∥∥∥PTEP∆PEP

∥∥∥
2
≥ (d+ δ)

∥∥∥P̂TEPPEP

∥∥∥
2
− d

∥∥∥P̂TEPPEP

∥∥∥
2

≥ δ
∥∥∥P̂TEPPEP

∥∥∥
2

It has now been proven, that√
F (Ĉ, V ) ≤ 2

√
2k
‖∆‖2
δ

Applying the following theorem then directly yields the theorem
stated above.

Theorem 2 ([27] Theorem 5.6.1, 5.6.4). Let y1, ..., ys be indepen-
dent samples of the graph filter as in eq. (3), let

∥∥yl∥∥
2
≤ KE[‖y‖22]

and let the effective rank of the covariance be r = Tr(Σ)/ ‖Σ‖2,
then for every c > 0 it holds, that:

‖∆‖2 ≤ ‖Σ‖2 C

(√
K2r log(n/c)

s
+
K2r log(n/c)

s

)

with probability at least 1− c.
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