
MULTICHANNEL SPEECH ENHANCEMENT WITHOUT BEAMFORMING

Ashutosh Pandey1*, Buye Xu1, Anurag Kumar1, Jacob Donley1, Paul Calamia1 and DeLiang Wang2

1Facebook Reality Labs Research, USA
2Department of Computer Science and Engineering, The Ohio State University, USA

ABSTRACT

Deep neural networks are often coupled with traditional spatial fil-
ters, such as MVDR beamformers for effectively exploiting spa-
tial information. Even though single-stage end-to-end supervised
models can obtain impressive enhancement, combining them with
a traditional beamformer and a DNN-based post-filter in a multi-
stage processing provides additional improvements. In this work, we
propose a two-stage strategy for multi-channel speech enhancement
that does not require a traditional beamformer for additional perfor-
mance. First, we propose a novel attentive dense convolutional net-
work (ADCN) for estimating real and imaginary parts of complex
spectrogram. ADCN obtains state-of-the-art results among single-
stage models. Next, we use ADCN with a recently proposed triple-
path attentive recurrent network (TPARN) for estimating waveform
samples. The proposed strategy uses two insights; first, using dif-
ferent approaches in two stages; and second, using a stronger model
in the first stage. We illustrate the efficacy of our strategy by eval-
uating multiple models in a two-stage approach with and without a
traditional beamformer.

Index Terms— multi-channel, two-stage, waveform mapping,
complex spectral mapping, fixed array

1. INTRODUCTION

Multi-channel speech enhancement is the task of removing noise,
intereference and reverberation from a degraded speech signal
by utilizing recordings from multiple microphones. Traditional
approaches use linear spatial filters, such as those from a minimum-
variance distortionless-response (MVDR) optimization, to preserve
signal from the target source and suppress all other signals in
the space [1]. In recent years, supervised speech enhancement
using deep neural networks (DNNs) has become the mainstream
methodology for speech enhancement [2].

For multi-channel processing, DNNs are generally incorporated
with traditional spatial filters [3]–[5], where the role of DNN is to
provide better estimates of speech and noise statistics for the spa-
tial filter. Another general approach is to train DNNs with spatial
features, such as inter-channel phase, time, and level differences [6],
[7]. A DNN trained with spatial features is expected to exploit spatial
cues for improved discrimination between target and interference. In
recent times, end-to-end supervised approaches without any explicit
spatial filtering have obtained impressive results [8]–[13]. The goal
of end-to-end approaches is to make the spatial filtering an implicit
part of supervised learning.

Even though these end-to-end supervised approaches have
shown impressive enhancement performance, they are yet to be
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widely accepted. This is due to a confounding empirical finding that
an end-to-end supervised model when combined with a traditional
spatial filter, such as an MVDR beamformer, and a DNN-based
post-filter, provides superior results compared to a DNN-only
single-stage or multistage processing [8], [14]–[16]. For example,
study in [8] obtained impressive performance by training a dense
convolutional recurrent network (DCRN) for multi-channel complex
spectral mapping. However, the performance was further improved
by using an MVDR beamformer along with a following DCRN as
the post-filter.

The effectiveness of an MVDR beamformer even with strong
DNN models can be attributed to the fact that DNNs introduce non-
linear distortions in the enhanced speech, which are removed or re-
duced when they are combined with a distortionless beamformer. As
a result, many of the approaches based on end-to-end learning have
been inspired from traditional beamformers [17], [18]. The com-
putation of beamformer weights requires matrix inversion, which
makes end-to-end learning unstable. A widely accepted strategy to
avoid training instability is diagonal loading [19]. A recent study
used recurrent neural networks for directly estimating the matrix in-
verse [18].

In this work, we argue that the use of a traditional beamformer
with a DNN is not necessary to obtain distortionless speech enhance-
ment. We propose a novel two-stage approach where both stages are
based on neural networks. Our two-stage scheme for multi-channel
speech enhancement uses two key strategies. The first strategy is to
use two different approaches for speech enhancement in two stages.
For instance, one stage might rely on complex spectral mapping,
an approach that estimates real and the imaginary parts of complex
spectrogram, and the other stage may use waveform mapping where
direct waveform to waveform enhancement is done. We believe that
complex spectral mapping and waveform mapping complement each
other in terms of removing the overall model bias. In other words,
they can get rid of some component of each other’s distortions, and
hence provide an overall system with fewer distortions.The second
strategy is to use the stronger approach out of the two, in the first
stage of the two-stage processing.

To this end, we first propose a novel attentive dense convolu-
tional network (ADCN) for multi-channel complex spectral map-
ping. Similar to a waveform mapping based model in [20], ADCN
is an encoder-decoder based UNet architecture where layers within
the encoder and decoder are augmented with dense blocks and atten-
tion blocks for context aggregation. ADCN obtains state-of-the art
results among single-stage systems.

Next, we evaluate different models in a two-stage scheme with
and without an MVDR beamformer. We empirically study two com-
plex spectral mapping models: ADCN and DCRN from [8], and
one waveform mapping model triple-path attentive recurrent net-
work (TPARN) recently proposed in [12].

ar
X

iv
:2

11
0.

13
13

0v
2 

 [
cs

.S
D

] 
 6

 A
pr

 2
02

2



Fig. 1. The proposed ADCN for multi-channel complex spectral mapping.

Our experimental results indicate that an MVDR beamformer
becomes redundant when two different approaches are used in two
stages. Also, we obtaine significantly better results when a stronger
model in the first stage is followed by a relatively weaker model in
the second stage.

2. PROBLEM DEFINITION

A multi-channel noisy speech x = [x1, . . . ,xP ] ∈ RP×N with N
samples and P microphones is modeled as

xp(n) = yp(n) + zp(n)

= hp(n) ∗ s(n) + zp(n)

= (hd
p(n) + hr

p(n)) ∗ s(n) + zp(n)]

= hd
p(n) ∗ s(n) + [hr

p(n) ∗ s(n) + zp(n)]

= dp(n) + [rp(n) + zp(n)]

= dp(n) + up(n)

(1)

where p = 1, 2, . . . , P, n = 0, 1, . . . N − 1. s is the source speech,
yp and zp are respectively the reverberated speech and noise re-
ceived at microphone p. ∗ denotes convolution operator and h is
the room impulse response (RIR) of source speech. hd is the direct-
path RIR and hr is the reverberation-path RIR of the source speech.
u is the overall interference including noise and room reverberation.
A multi-channel speech enhancement algorithm aims at obtaining a
good estimate d̂r of the direct-path speech at a reference microphone
r from multi-channel noisy recording x.

3. ATTENTIVE DENSE CONVOLUTIONAL NETWORK

The architecture of the proposed ADCN is shown in Fig. 1. It is
a UNet architecture with an encoder and a decoder. The input to

ADCN, X = STFT(x), is of shape 2 ·P ×T × 257 with T frames.
It is transformed to shape C × T × 257 using a 5× 5 convolutional
layer with layer normalization (LN) and parametric ReLU (PReLU).
Next, it is processed using a stack of 6 encoder blocks and 6 decoder
blocks. The output of a decoder block is concatenated with the out-
put from a corresponding symmetric block in the encoder. The final
output is computed by a 5 × 5 convolutional layer with 2 output
channels. The output waveform is obtained using an inverse STFT
(iSTFT) layer at the output.

The encoder block comprises a stack of a dense block, a 1 × 3
convolutional block using a stride of 2 for downsampling with LN
and PReLU, and an attention block. The output of the attention block
is concatenated with its input to get the final output. The decoder
block is similar to the encoder block except that it uses 1 × 3 sub-
pixel convolution for upsampling [20] in the place of strided convo-
lution for downsampling.

The architecture of the dense block is shown in Fig. 2. It com-
prises a stack of five 3 × 3 convolutional layer with C output chan-
nels, LN and PReLU. The input to a given convolutional layer in a
dense block is a concatenation of the block input and outputs from
preceding convolutional layers in the block.

The architecture of the attention block is shown in Fig. 3. An
input of shape C × T × L is first transformed using three separate

Fig. 2. Dense block in ADCN. a and b in a, b inside a box respec-
tively denote the number of input and output channels.



1 × 1 convolutional layers to get query Q, key K, and value V of
shapes E × T × L, E × T × L, and J × T × L respectively and
then rearranged to 2d tensors of shapes T × E · L, T × E · L, and
T × J · L. Next, the output from attention is computed as A =
Softmax(QKT )V . Finally, A is rearranged to a 3d tensor of shape
J × T × L.

Fig. 3. Attention block in ADCN.

4. TWO-STAGE MULTICHANNEL SPEECH
ENHANCEMENT

We evaluate three models: DCRN, ADCN and TPARN with the fol-
lowing approaches to two-stage processing.

4.1. Two-stage Approach with a Beamformer

The two-stage approach with an MVDR beamformer is shown in
Fig. 4 (a). First, a DNN is trained to estimate enhanced speech at
all channels. TPARN can output enhanced signals at all channels si-
multaneously as it is a multiple-input and multiple-output (MIMO)
model. DCRN and ADCN, on the other hand, are multiple-input
and single-output (MISO) model, and hence, require enhancing all
channels independently by running the enhancement model P times
for P channels. The output for the mth microphone is computed
by using a circularly shifted input [xm,xm+1, . . . ,xm−2,xm−1]
[8]. This strategy works because we use a symmetric circular micro-
phone array.

(a) The two-stage approach with a beamformer.

(b) The two-stage approach without a beamformer.

Fig. 4.

Table 1. Model comparisons for single-stage multi-channel speech
enhancement.

Test Dataset WSJCAM0 DNS
Test Metric SI-SDR STOI PESQ SI-SDR STOI PESQ

Unprocessed -3.8 70.9 1.63 -7.6 63.8 1.38
DCRN 9.4 96.5 3.31 4.6 90.1 2.57
TPARN 10.4 96.9 3.43 8.4 91.9 2.75
ADCN 12.0 97.3 3.42 7.8 92.3 2.84

Next, enhanced speech at all channels are used to estimate the
coefficients of a time-invariant MVDR (TI-MVDR) beamformer us-
ing following equations.

Φ̂(d)(f) =
1

T

T∑
t=1

D̂(t, f)D̂(t, f)H

Φ̂(u)(f) =
1

T

T∑
t=1

Û(t, f)Û(t, f)H

(2)

where D̂ = STFT(d̂) ∈ CP×T×F has T frames and F frequency
bins, Û = X−Û , and D̂(t, f) is the value at frame t and frequency
bin f .

In our experiments, sound sources are assumed to be static
within each utterance, therefore, time-invariant MVDR (TI-MVDR)
is a better choice than time-varying beamformer [16]. The relative
transfer function with respect to the reference microphone is
computed as

ĉr(f) = P{Φ̂d(f)}/P{Φ̂d
r(f)} (3)

where P extracts the principal eigenvector and Φ̂d
r(f) is the rth

component of Φ̂d(f). The MVDR beamformer is computed as

ŵr(f) =
Φ̂u(f)−1ĉr(f)

ĉr(f)HΦ̂u(f)−1ĉr(f)
(4)

The beamformer output is computed as

B̂F r(t, f) = ŵr(f)HX(t, f) (5)

A waveform from the beamformer output is obtained as

b̂r = iSTFT( ˆBFr) (6)

Finally, a second DNN model is trained to map the speech from
beamformer and the noisy multi-channel speech to enhanced speech.
The input to DCRN and ADCN is a concatenation of b̂r and x along
the channel dimension in STFT. The input to TPARN is a concate-
nation of b̂ and x along the frame dimension as TPARN requires a
sequential input across channels [12], [13].

4.2. Two-stage Approach without a Beamformer

The two-stage approach without a beamformer is shown in Fig. 4 (b).
In this approach, a DNN is trained first to get an estimate of enhanced
speech at all channels and then an another DNN is trained to map
enhanced speech and noisy speech at all channels to the enhanced
speech at the reference channel. The input to DCRN and ADCN is
a concatenation of d̂ and x along the channel dimension in STFT.
The input to TPARN is a concatenation of d̂ and x along the frame
dimension.



Table 2. Model comparisons for two-stage multi-channel speech
enhancement with and without beamforming.

Test Dataset WSJCAM0 DNS
Stage1↓ Stage2 ↓ Type ↓ SI-SDR STOI PESQ SI-SDR STOI PESQ

Unprocessed 5 -3.8 70.9 1.63 -7.6 63.8 1.38

DCRN

DCRN (a) 10.7 97.1 3.43 5.6 91.6 2.69
(b) 9.9 96.8 3.46 6.9 91.0 2.64

TPARN (a) 11.4 97.2 3.51 7.3 90.9 2.63
(b) 11.1 97.3 3.56 8.3 92.2 2.80

ADCN (a) 12.5 97.4 3.44 8.0 93.0 2.87
(b) 11.2 97.1 3.47 7.5 91.5 2.73

TPARN

DCRN (a) 11.2 97.2 3.45 6.7 92.0 2.73
(b) 12.3 97.5 3.55 9.2 93.0 2.85

TPARN (a) 11.3 97.2 3.52 8.1 91.8 2.71
(b) 12.1 96.9 3.47 8.5 92.0 2.76

ADCN (a) 12.9 97.4 3.42 8.9 93.5 2.95
(b) 12.3 97.5 3.51 9.6 93.2 2.92

ADCN

DCRN (a) 10.9 97.0 3.43 6.6 92.0 2.75
(b) 12.7 97.5 3.47 8.6 92.9 2.85

TPARN (a) 11.8 97.2 3.50 7.9 91.4 2.67
(b) 13.8 98.0 3.64 10.0 93.7 2.99

ADCN (a) 12.7 97.5 3.47 8.5 93.4 2.93
(b) 12.4 97.5 3.48 8.9 92.9 2.89

5. EXPERIMENTS

5.1. Experimental Settings

We use a four-microphone circular array of radius of 10 cm with
equal spacing between microphones. All the models are trained and
evaluated on two different datasets. The first dataset is created us-
ing speakers from the WSJCAM0 [21] dataset and noises from the
REVERB challenge [22]. A uniform T60 from [0.2, 1.2] seconds is
used for reverberation and a uniform SNR from [5, 20] dB is used for
noise. An algorithm for generating this dataset is given in [8]. The
second dataset is created from the DNS 2020 corpus1 [23]. For this
dataset, T60 is used from [0.2, 1.2] seconds and SNR is used from
[−10, 10] dB. The DNS dataset can be considered more challenging
than the WSJ0CAM / REVERB dataset as it uses diverse and diffi-
cult non-stationary noises with low SNR values. The data generation
algorithm for the DNS dataset is given in [12].

All the utterances are resampled to 16 kHz. We use a frame size
of 32 ms, frame shift of 8 ms, C = 64, E = 5, and J = 32 for
ADCN. TPARN and DCRN are trained using methods proposed in
their original studies. ADCN is trained using a phase constrained
magnitude (PCM) loss [20]. All the models are trained for 100
epochs with a batch size of 8 4-s long utterances randomly extracted
at the training time. The initial learning rate is set to 0.0004 and
is scaled by half if the validation score does not improve for five
consecutive epochs.

The first microphone, r = 1, is used for objective evaluation.
All the models are evaluated using short-time objective intelligibility
(STOI) [24], perceptual evaluation of speech quality (PESQ) [25],
and scale-invariant signal-to-distortion ratio (SI-SDR). STOI is re-
ported in percentage.

5.2. Experimental Results

First, we compare DCRN, ADCN and TPARN in Table 1 for single-
stage end-to-end training. ADCN obtains best results in all the cases
except for SI-SDR at DNS where it is slightly worse that TPARN.
A general performance order of these models is DCRN < TPARN

1https://github.com/microsoft/DNS-Challenge/
blob/master/LICENSE

< ADCN. Even though TPARN is worse than ADCN, it has com-
putational advantages over ADCN and DCRN. For example, using
ADCN in the first stage requires P forward passes for P channels,
whereas TPARN can enhance signals at all channels in one pass.

Next, we compare two approaches: (a) two-stage with a beam-
former, (b) two-stage without a beamformer. We consider an overall
improvement over two datasets between (a), (b) and make bold the
one with better improvements. We highlight both (a) and (b) if their
performances are similar.

Firstly, we observe that with a complex spectral mapping model
DCRN in the first stage, beamformer is better for complex spectral
mapping models DCRN and ADCN, but worse for the waveform
mapping model TPARN in the second stage. This suggest that for a
weaker complex spectral mapping model, beamformer is helpful but
only for models with the same approach, complex spectral mapping,
in the second stage.

Next, we observe that with TPARN in the first stage, beam-
former is worse for DCRN and and similar for ADCN and TPARN
in the second stage. This suggest that for a relatively stronger model
TPARN, beamformer does not provide any consistent improvement.

Further, we can see that with ADCN in the first stage, beam-
former obtains worse results with DCRN and TPARN and compara-
ble results with ADCN. These comparisons indicate that the beam-
former is helpful only if the first stage model is weak and the second
stage model uses same approach as the first stage model.

Finally, we note that the best results are reported with TPARN
followed by DCRN for the pair (TPARN, DCRN) and with ADCN
followed by TPARN for the pair (TPARN, ADCN). This suggests
that a much better performance can be obtained without a beam-
former by using different approaches, complex spectral mapping and
waveform mapping in two stages and employing the stronger model
in the first stage. Also, we find that ADCN followed by TPARN
obtains significantly better results than the second best.

6. CONCLUSIONS

We have proposed a novel attentive dense convolutional network for
multi-channel speech enhancement. We have also proposed a two-
stage approach that obtains excellent results without a beamformer.
The proposed approach uses ADCN for complex spectral mapping
in the first stage and TPARN for waveform mapping in the second
stage. Future research includes evaluating the effectiveness of the
proposed approach for ASR improvements.
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