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UNCERTAINTY IN DATA-DRIVEN KALMAN FILTERING FOR PARTIALLY KNOWN
STATE-SPACE MODELS
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ABSTRACT

Providing a metric of uncertainty alongside a state estimate
is often crucial when tracking a dynamical system. Classic
state estimators, such as the Kalman filter (KF), provide a
time-dependent uncertainty measure from knowledge of the
underlying statistics; however, deep learning based tracking
systems struggle to reliably characterize uncertainty. In this
paper, we investigate the ability of KalmanNet, a recently pro-
posed; hybrid; model-based; deep state tracking algorithm,
to estimate an uncertainty measure. By exploiting the inter-
pretable nature of KalmanNet, we show that the error covari-
ance matrix can be computed based on its internal features,
as an uncertainty measure. We demonstrate that when the
system dynamics are known, KalmanNet—which learns its
mapping from data without access to the statistics—provides
uncertainty similar to that provided by the KF; and while in
the presence of evolution model-mismatch, KalmanNet pro-
vides a more accurate error estimation.

Index Terms— Kalman filter, deep learning, uncertainty

1. INTRODUCTION

Tracking a hidden state vector from noisy observations in
real-time is at the core of many signal processing applications.
A leading approach to the task is the Kalman filter (KF) [1],
which operates with low complexity and achieves a minimum
mean-squared error (MMSE) in setups characterized by lin-
ear Gaussian state space (SS) models. A key merit of the
KF, which is of paramount importance in safety critical ap-
plications, e.g., autonomous driving, aviation, and medical,
is its ability to provide uncertainty alongside state estima-
tion [2, Ch. 4]. KF and its variants are model-based (MB)
algorithms, and are therefore sensitive to inaccuracies in mod-
eling the system dynamics using the SS model.

I. Klein is with the Hatter Department of Marine Technologies, Univer-
sity of Haifa, Israel (email: kitzik@univ.haifa.ac.il). G. Revach and J. E.
Mehr are with the Institute for Signal and Information Processing (ISI), D-
ITET, ETH Ziirich, (email: grevach@ethz.ch, mehrjo@student.ethz.ch). N.
Shlezinger is with the School of ECE, Ben-Gurion University of the Negev,
Beer Sheva, Israel (e-mail: nirshl@bgu.ac.il). R. J. G. van Sloun is with the
EE Dpt., Eindhoven University of Technology, and with Phillips Research,
Eindhoven, The Netherlands (e-mail: r.j.g.v.sloun@tue.nl). Y. C. Eldar is
with the Faculty of Math and CS, Weizmann Institute of Science, Rehovot, Is-
rael (e-mail: yonina.eldar@weizmann.ac.il). The authors thank Prof. Hans-
Andrea Loeliger for his helpful comments and discussion.

The recent success of deep learning architectures, such
as recurrent neural networks (RNNs) [3]] and attention mech-
anisms [4]], in learning from complex time-series data in
unstructured environments and in a model-agnostic manner,
evoked interest in using them for tracking dynamical systems.
However, the lack of interpretability of deep architectures
and their inability to capture uncertainty [S]], together with
the fact that they require many trainable parameters and large
data sets even for simple setups [|6], limit their applicability
for safety-critical applications in hardware-limited systems.

Characterizing uncertainty in deep neural networks (DNNs)
is an active area of research [[7H9]. One approach is to use
Bayesian DNNs [10], which, when combined with SS mod-
els, enables extraction of the uncertainty. See, e.g., [ 1-13]].
However, doing so relies on variational inference, which
makes learning more complex and less scalable, and cannot
be used directly for state estimation [5]]. Alternatively, one
can use deep learning techniques to estimate the SS model
parameters and then plug them into a variant of a KF that
provides uncertainty; e.g., [14-17]. These approaches are
limited in accuracy and complexity, requiring linearization of
the second-order moments to compute the error covariance as
required by the MB KF. The KF-inspired RNN proposed [5]
was trained to predict both the state and the error. How-
ever, [5] focused on specific factorizable SS models with
partially observable states, for which the KF is simplified to
parallel scalar operations, and the proposed architecture does
not naturally extend to general SS models.

The recently proposed KalmanNet [18] utilizes RNNs
to enhance the robustness of the KF for complex and mis-
matched models as a form of MB deep learning [|19]. Kalman-
Net was shown to operate reliably in practical hardware-
limited systems [20] due to its principled incorporation
of partial domain knowledge. In this work we show how
KalmanNet can be extended to provide uncertainty measures,
by exploiting its interpretable architectures and the fact that
it preserves the internal flow of the KF. In particular, we
build upon the identification of an internal feature as the esti-
mated Kalman gain (KG), and show that when combined with
partial domain knowledge, it can be used to compute the time-
dependent error covariance matrix. We numerically show that
the extracted uncertainty indeed reflects the performance of
KalmanNet, providing similar state estimates and error mea-
sures as the KF—which knows the SS model—while being



notably more reliable in terms of tracking and uncertainty in
the presence of mismatched models.

The rest of the paper is organized as follows: Section[2]re-
views the SS model and recalls the KF and KalmanNet. Sec-
tion [3] analyzes the extraction of uncertainty in KalmanNet,
while Section ] presents a numerical study.

2. SYSTEM MODEL AND PRELIMINARIES

We review the SS model and briefly recall the MB KF, since
its operation serves as the baseline for KalmanNet and for its
uncertainty extraction scheme detailed in Section [3] We then
recap the data-driven filtering problem and the architecture of
KalmanNet. For simplicity, we focus on linear SS models, al-
though the derivations can also be used for non-linear models
in the same manner as the extended KF [2, Ch. 10].

2.1. System Model and Model-Based Kalman Filtering

We consider a dynamical system characterized by a linear,
Gaussian, continuous evolution model in discrete-time. For
t € Z, this SS model is defined by [21]]
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In (Ta), x; is the latent state vector of the system at time ¢,
which evolves by a linear state evolution matrix F and by
an additive white Gaussian noise (AWGN) w; with noise co-
variance Q. In (Tb), y; is the vector of observations at time
t, H is the measurement matrix, and v; is an AWGN with
measurement noise covariance R.. The filtering problem deals
with real-time state estimation; i.e., the recovery of x; from
{y+}r<: for each time instance ¢ [2].

The KF is a two-step, low complexity, recursive algorithm
that produces a new estimate X; from a new observation y,
based on the previous estimate X;_; as a sufficient statistic.
In the first step it predicts the statistical moments based on
the previous a posteriori estimates:

Y1 =F -3 ‘FT+Q, (2
H'+R. (2b)
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In the second step, the a posteriori moments are updated

based on the a priori moments. The pivot computation for
this step is the Kalman gain /C;:

Ke=%,, -H- s;t{l. (3)

Given the new observation y, the state estimate, i.e., the first-

order posterior, is obtained via
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The second-order posterior, which is the estimation error co-
variance, is then computed as
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Fig. 1: KalmanNet block diagram.

When the noise is Gaussian and the SS model parameters
are fully known, the KF is the MMSE estimator.

2.2. Data-Driven Filtering with KalmanNet

In practice, the state evolution model (Ta) is determined by the
complex dynamics of the underlying system, while the obser-
vation model (TD) is dictated by the type and quality of the ob-
servations. For instance, x; can be the location, velocity, and
acceleration of a vehicle, while y; are measurements obtained
from several sensors. For real world problems it is often dif-
ficult to characterize the SS model accurately. In data-driven
filtering, one relies on a labeled data set—i.e., y; with its cor-
responding ground truth x;—to fill the information gap.

KalmanNet [|18]] is a DNN-aided architecture for state es-
timation and filtering with partial domain knowledge. It con-
siders filtering without knowledge of the noise covariance ma-
trices and with a possibly inaccurate description of the evolu-
tion matrix F' and the observation model H, obtained from,
e.g., understanding of the system dynamics and the sensing
setup. Although R, the observation covariance, is not needed
for state estimation with KalmanNet, for simplicity of deriva-
tion, here we assume that it is known (or estimated) and thus
set R = I,,, since one can always process R~1/2y, without
altering the achievable mean-squared error (MSE).

KalmanNet [[18]] implements data-driven filtering by aug-
menting the theoretically solid flow of the MB KF with a
RNN. The latter is designed to learn to estimate the KG,
whose MB computation encapsulates the missing domain
knowledge, from data. The inherent memory of the RNN al-
lows implicit tracking of the second-order statistical moments
without requiring knowledge of the underlying noise statis-
tics. In a similar manner as the KF, it predicts the first-order
moments X;;_; and ¥, , which are then used to estimate
x; via {@). The overall system, illustrated in Fig.[I] is trained
end-to-end to minimize the MSE between X; and the true x;.



3. UNCERTAINTY IN KALMANNET

KalmanNet, detailed in Subsection is designed and
trained to estimate the state variable x;. Neither its archi-
tecture nor the loss measure it uses for training encourage
KalmanNet to maintain an estimate of its error covariance,
which the KF provides. However, as we show here, the
fact that KalmanNet preserves the flow of the KF allows to
estimate its error covariance from its internal features.

3.1. Kalman Gain-based Error Covariance

To extend KalmanNet to provide uncertainty, we build on top
of the interpretable feature of KalmanNet, which is the esti-
mated KG. Combined with the observation model, the KG
can be used to compute the time-dependent, error covariance
matrix ¥, thus bypassing the need to explicitly estimate the
evolution model, as stated in the following theorem:

Theorem 1. Consider the SS model (1) where H has full col-
umn rank; i.e, H = (H—r . H)_1 exists. Then, filtering with
the KG IC; (3) results in estimation with error covariance
=T, - K -H HH (I, -HK,) '
‘H-K, -H-H. (6)
Proof. By combining (3) and (3)), the error covariance can be
written as 3; = (I, — K; - H) X;;_;. Thus, to estimate

34, we express 3;;_; using KC; and the available domain
knowledge. To that end, multiplying (3) by H gives

H-K=H%,, H . s;ﬁ{l. (7

Next, (7) is multiplied by S;|;_; from the right side, followed
by substitution of (2b), which yields

H-K - (H-Z,,, H +R)=H-%,,; -H'. (8
Combining terms in (8] results in
H Sy H =, ~HK)" HK. (9

Multiplying () from the left by H' and from the right by H
yiels H -H-%,, , HT -H=H" (I, -H-K,) ""H-
KC, - H, which, when H = HT- H)_1 exists, results in

Sy =HH (I,-H - K,) " H-K, H-H (10)
concluding the proof of the theorem. O

Theorem [I] indicates that when the observation model
is known and H has full column rank—requiring that the
number of measurements not be smaller than the number of
tracked states—then one can extend KalmanNet to predict its
error covariance alongside its state estimation. The resulting
procedure is summarized as Algorithm 1]

Algorithm 1: KalmanNet with error prediction

Init: Trained KalmanNet, previous estimate X;_1,
incoming observations y;
1 Filtering: Apply KalmanNet to estimate X;
2 Error prediction: Estimate 3, via (6) with IC; being
the output of the internal RNN of KalmanNet;

Output: Predicted state x; and error f]t

3.2. Discussion

KalmanNet [18]] was designed for real-time tracking in non-
linear SS models with unknown noise statistics. Algorithm [I]
extends it to provide not only X;, an estimate of the state—i.e.,
for which it was previously derived and trained—but also 3.,
an estimate of the time-dependent covariance matrix as an un-
certainty measure. This is achieved since KalmanNet retains
the interpretable flow of the MB KF, where the KG is learned
by a dedicated RNN. Numerical evaluations presented in Sec-
tion 4| indicate that KalmanNet computes the true covariance
matrix as it reflects the true empirical error—as expected from
the MSE bias variance decomposition theorem [22].

For simplicity and clarity of exposition, Algorithm [T] was
derived for linear SS models. In Section ] we also present
results for a non-linear chaotic system, where the extended
KF derivation is used; i.e., the SS model matrices are re-
placed with their respecting Jacobians [2, Ch. 10]. The ad-
ditional requirement—that observation noise covariance R is
known and needed only for the purpose of estimating the co-
variance—is often satisfied, as in many applications the main
modelling challenge is related to the state evolution rather
than the measurement noise. Since we assume that we have
access to a labeled data set, one can estimate R with standard
techniques without assumptions regarding the evolution. The
case where H is not full column rank is left for future work.

4. NUMERICAL EVALUATIONS

In this section we numericallyﬂ compare the covarince com-
puted by KalmanNet to the one computed by the KF in the
linear and non-linear cases.

We start with the linear Gaussian SS model, for which the
KF achieves the MMSE lower bound, and is an unbiased es-
timator [23]]. We generate data from a scalar SS model where
H=Q=R =1and F = 0.9, with sequence length of
100 samples, and compare the error predicted by KalmanNet
and its deviation from the true error to those computed by the
MB KEF that knows the SS model. We observe in Fig. [2] that
the theoretical error computed by KF for each time step ¢ and
the error predicted by KalmanNet coincide, and that both al-

'The source code along with additional information on the numeri-
cal study can be found online at https://github.com/KalmanNet/
ERRCOV_ICASSP22,
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Fig. 4: Average error, linear SS model with mismatch.

gorithms have a similar empirical error. In Fig. 3| we demon-
strate that for a single realization of ground truth trajectory,
both algorithms produce the same uncertainty bounds. Next,
we consider the case where both KalmanNet and the MB KF
are plugged in with a mismatched model parameter F' = 0.5.
In Figs. ] and [5] we observe that for such a model mismatch,
KalmanNet produces uncertainty similar to the empirical er-
ror, while the KF underestimates its empirical error.
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Fig. 6: Average error, non-linear Lorenz attractor model.

Next, we demonstrate the merits of KalmanNet when fil-
tering the Lorenz attractor—a challenging three-dimensional
non-linear chaotic system—and compare its performance
to the extended KF. See for a detailed description of
this setup. The model mismatch in this case is due to sam-
pling a continuous-time system characterized by differential
equations to discrete-time. In Fig. [§] we clearly observe that
KalmanNet achieves a lower MSE and estimates its error
fairly accurately, while the extended KF overestimates it.

5. CONCLUSIONS

In this work we extended the recently proposed KalmanNet
state estimator to predict its error alongside the latent state.
This is achieved by exploiting the hybrid model-based/data-
driven architecture of KalmanNet, which produces the KG as
an internal feature. We prove that one can often utilize the
learned KG to predict the error covariance as a measure of
uncertainty. Our numerical results demonstrate that this ex-
tension allows KalmanNet to accurately predict both the state
and error, improving upon the KF in the presence of model-
mismatch and non-linearities.
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