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ABSTRACT

This paper introduces the NWPU Team’s entry to the ICASSP
2022 AEC Challenge. We take a hybrid approach that cascades a
linear AEC with a neural post-filter. The former is used to deal with
the linear echo components while the latter suppresses the residual
non-linear echo components. We use gated convolutional F-T-LSTM
neural network (GFTNN) as the backbone and shape the post-filter
by a multi-task learning (MTL) framework, where a voice activ-
ity detection (VAD) module is adopted as an auxiliary task along
with echo suppression, with the aim to avoid over suppression that
may cause speech distortion. Moreover, we adopt an echo-aware
loss function, where the mean square error (MSE) loss can be opti-
mized particularly for every time-frequency bin (TF-bin) according
to the signal-to-echo ratio (SER), leading to further suppression on
the echo. Extensive ablation study shows that the time delay esti-
mation (TDE) module in neural post-filter leads to better perceptual
quality, and an adaptive filter with better convergence will bring con-
sistent performance gain for the post-filter. Besides, we find that us-
ing the linear echo as the input of our neural post-filter is a better
choice than using the reference signal directly. In the ICASSP 2022
AEC-Challenge, our approach has ranked the 1st place on word ac-
curacy (WAcc) (0.817) and the 3rd place on both mean opinion score
(MOS) (4.502) and the final score (0.864).

Index Terms— Acoustic echo cancellation, noise suppression,
multi-task learning

1. INTRODUCTION

Annoying acoustic echo arises when microphone and loudspeaker
are coupled in a real-time communication (RTC) system such that
the microphone picks up the desired near-end speech signal plus
the unwanted loudspeaker signal. Acoustic echo has become one
of the major sources of poor speech quality ratings in RTC [1]. As
an indispensable module in RTC, acoustic echo cancellation (AEC)
aims to remove such unpleasant acoustic echo from the near-end
microphone signal while minimizing the distortion of the near-end
speaker’s speech. More challengingly, a complete AEC system may
need to consider noise suppression [2] as well because noise is in-
evitable in actual acoustic environments. Moreover, AEC is also
essential for downstream tasks such as speech recognition [3].

Digital signal processing (DSP) based linear echo cancellation
has been adopted in RTC for a long time, which works by estimating
near-end speech [4] or acoustic echo path [5] with an adaptive filter.
Such algorithms usually give an estimate of the near-end speech and
an estimate of the linear echo obtained by cancellation. A post-filter
algorithm [6] is usually used to further remove the residual echo that
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cannot be completely removed by the linear AEC algorithm. How-
ever, these methods are still not quite effective for echo suppression
especially in the presence of noise interference.

Recent advances in deep learning have shown great potential in
AEC due to the strong non-linear modeling ability of deep neural
networks (DNN). Some neural AEC approaches tried to use a neural
network directly without any conventional DSP module. Specifi-
cally, Zhang and Wang [2] formulated AEC as a supervised speech
separation problem, where a bidirectional long-short term memory
(LSTM) network was adopted to predict a magnitude mask of the mi-
crophone signal. West-hausen et al. [7] extended dual-signal trans-
formation LSTM network (DTLN) [8] by adopting the far-end sig-
nal as additional information. Zhang et al. [9] extended deep com-
plex convolution recurrent network (DCCRN) [10], which was orig-
inally designed for speech enhancement with superior performance,
with frequency-time LSTM (F-T-LSTM) network [11] to better learn
the relationship between frequency bands for effectively suppress-
ing echo. In contrast, other methods effectively combine DSP with
a neural network without losing the advantages of traditional signal
processing in handling the linear component of mixed signal. As a
typical approach, Wang et al. [12] cascaded an adaptive filter based
linear echo canceller with a deep feedforward sequential memory
network (DFSMN) [13] based post-filter. Peng et al. [14] adopted
multiple filters for simultaneous linear echo cancellation and time
delay estimation (TDE), cascaded further with a gated complex con-
volutional recurrent neural network (GCCRN) post-filter. The two
approaches have shown superior performance in the recent AEC-
Challenge series [1, 15].

Recently, processing of super-wideband and full-band speech
signal has become more and more popular with the explosion of
real-time communication and online collaboration. However, mod-
eling more frequency bands and particularly high frequency compo-
nents of speech signal is more challenging. The latest ICASSP 2022
AEC Challenge [16] has particularly focused on AEC for full-band
speech. More challengingly, the performance of downstream speech
recognition is also considered as a challenge metric. In other words,
the AEC performance is measured by both human and machine au-
ditory perception, i.e., human subjective listening score and machine
speech recognition accuracy.

In this paper, we introduce our NWPU Team’s entry to the
ICASSP 2022 AEC Challenge. We submit a hybrid approach that
combines a linear AEC with a neural post-filter. Specifically, in-
spired by our recent work [9], we propose a gated convolutional
F-T-LSTM neural network (GFTNN) as the post-filter. More im-
portantly, we shape our neural post-filter by a multi-task learning
(MTL) framework, where a voice activity detection (VAD) module
is adopted as an auxiliary task along with echo suppression. The
MTL framework is designed to avoid over suppression and benefit
speech recognition accuracy. Moreover, we adopt an echo-aware
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Fig. 1. Diagram of our proposed AEC system.

loss function, where the mean square error (MSE) loss can be opti-
mized particularly for every time-frequency bin (TF-bin) according
to the signal-to-echo ratio (SER), leading to further suppression of
the echo. Through an extensive ablation study, we also find that the
TDE module leads to better perceptual quality, and an adaptive filter
with better convergence will bring consistent performance gain for
the post-filter. Besides, using the linear echo as the input of our
neural post-filter is a better choice than using the reference signal
directly. According to the official results of the challenge, our ap-
proach has ranked the 1st place on word accuracy (WAcc) (0.817)
and the 3rd place on both mean opinion score (MOS) (4.502) and
the final score (0.864).

2. PROPOSED METHOD

2.1. Problem formulation

We illustrate the main architecture of the proposed AEC algorithm
in Fig. 1. The microphone signal d(n) consists of near-end speech
s(n), acoustic echo z(n) and background noise v(n):

d(n) = s(n) + z(n) + v(n) (1)

where n refers to the time sample index. Here z(n) is obtained
by the far-end signal x(n) convolved by echo path, with potential
nonlinear distortions caused by loudspeakers. The AEC task aims to
separate s(n) apart from d(n), on the premise that x(n) is known.
The error signal e(n) and linear echo y(n) are generated using x(n)
and d(n) by adaptive filter. D,E,X and Y are the frequency do-
main representation of d, e, x and y, respectively. Note that the dot-
ted lines in Fig. 1 are optional according to different configurations,
which will be compared in Section 3. Specifically, the VAD module
attached with the post-filter is used as the auxiliary task.

2.2. Split and synthesize

To confine our model with reasonable size and complexity, here we
use 3-band finite impulse response (FIR) filter-bank with discrete
cosine transform (DCT) modulation [17] to decompose the full-band
(48k Hz) signal to subbands and only process the wide-band (16k
Hz) signals, and the full-band signal finally is synthesized by average
gain control.

As shown in Fig. 2(a), for full-band signal dfull and xfull, we
use band-pass filters to obtain the wide-band signal d and x, where
dh denotes the remaining high-frequency bands of signal (8 to 16k
Hz and 16 to 24k Hz). The average gain each frame for dh is calcu-
lated as follows:

g(t) = min(

∑b
a Ŝ(t, f)∑b
a D(t, f)

,

∑d
c Ŝ(t, f)∑d
c D(t, f)

) (2)

where t is frame index and f denotes frequency bin index, {a =
11, b = 81} and {c = 121, d = 161} cover frequency range for 0.5
to 4k Hz and 6 to 8k Hz, respectively.

In the pipeline of the AEC system in Fig. 1, we implement TDE
module using Generalized Cross Correlation with PHAse Trans-
form (GCC-PHAT) [18] and the linear AEC using MDF [19] and

Table 1. Configuration of the VAD module. *-Dense means dense
layer for the corresponding axis.

Layer Name Input Size Hyper Params Output Size

F-Dense T× C× F (9, 16) T× C× 16
Reshape T× C× 16 - T× 4C× 4
Maxpool1d T× 4C× 4 kernel=4, stride=4 T× 4C× 1
Reshape T× 4C× 1 - T× C× 4
F-LSTM T× C× 4 hidden size=C T× C× 4
F-Dense T× C× 16 (16,1) T× C× 1
C-Dense T× C× 1 (C,2) T× 2

wRLS [12]. Specifically, we make comparison on different adap-
tive filters which will be explained in detail in Section 3 later. The
process of subband synthesis is as follows:

Ŝfull(t, f) = SYN
(
Ŝ(t, f), g(t) ·Dh(t, f)

)
(3)

where Ŝ, Ŝfull and Dh are the frequency domain representation of
ŝ, ŝfull and dh. SYN represents commonly used subband synthesis
method in RTC scenarios [17].

2.3. GFTNN post-filter

Fig. 2(b), (c), (d) and (e) show the four sub-modules of the proposed
GFTNN-based post-filter, namely GConv, TrGConv, VAD and FTL-
STM. ∗r/∗i represents the real/imaginary part of a certain signal in
frequency domain. The dotted box of the input feature indicates that
a certain signal may not be used. In this paper, we explore three
types of combinations, namely DX , EX and DEY .

Taking DEY as an example, the input feature w ∈ R3×n, where
3 denotes three signals – d(n), e(n) stacks with y(n). Performing
short-time Fourier transform (STFT) on the input feature w, we ob-
tain the complex spectra W = Wr + jWi, where W ∈ R6×T×F .
T denotes the frame number and F denotes the frequency bins. We
use the method in [14] to compress w and decompress them after the
last layer of the GFTNN post-filter.

The GFTNN encoder consists of 4 GConv layers with same in-
put and output channel for each Conv2d layer, excepting for the first
GConv layer which needs to be selected according to the input sig-
nal (6 in the given example). 1 × 1 convolutional layers are used to
connect shallow and deep feature representation, which proves to be
beneficial according to [20]. The FTLSTM layers (FTLSTMs) are
defined in [9]. The output tensor dimension of both the encoder and
the FTLSTMs is RC×T×F , where C denotes the channel dimension.

The Real/Imag-Decoder consists of 4 TrGConv layers with same
input and output channel for each Transpose-Conv2d layer, except
that the output channel of the last TrGConv layer needs to be 1,
which is used to estimate the real/imaginary part of the clean near-
end spectra. ⊕ indicates the conv1× 1 output concatenated with the
previous TrGConv layer output.

Inspired by [21], we use the norm-layer implemented by LSTM
as our VAD module. But different from [21], our structure recurs at
channel axis, leading to a causal VAD module. The specific details
of the VAD module can be found in Fig. 2(d) and Table 1, where ⊗
means the point-wise product of tensor G ∈ RT×1×4×C and tensor
H ∈ RT×4×4×C . The F-LSTM follows the details defined in our
previous work [9].

2.4. Loss function

Our loss function is based on the power-law compressed phase-
aware (PLCPA) loss [22] and the VAD information. As described
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Fig. 2. Full-band signal processing and GFTNN post-filter. (b) GConv: Gated conv-2d. (c) TrGConv: Transpose gated conv-2d.

in [22], PLCPA is beneficial for both ASR accuracy and perceptual
quality. It is mainly composed of two parts – amplitude loss Lmag

and phase loss Lpha, defined as follows:

Lmag(t, f) = ||S(t, f)|p−|Ŝ(t, f)|p|2

Lpha(t, f) = ||S(t, f)|pejϕ(S(t,f)) − |Ŝ(t, f)|pejϕ(Ŝ(t,f))|2.
(4)

The VAD loss Lvad is defined as
Lvad = CrossEntropy

(
P, P̄

)
(5)

where P̄ ∈ RT×1 is the near-end speech activity label based on the
short-term energy threshold and P ∈ RT×2 is the estimated state of
the VAD module.

Echo-aware loss: Previous studies [23] have shown that the use
of multiple losses, such as SI-SNR and MSE, are beneficial, where
the weight of each loss is adjusted through a hyper-parameter. In-
spired by this, in our approach, we adjust the weight of different
TF-bins using the proportion of echo power. So we get the echo
weighted coefficients defined as

Wecho(t, f) =
|Z(t, f)|2

|Z(t, f)|2 + |S(t, f)|2
. (6)

Weighting the amplitude loss Lmag, we get

Lecho =
1

T

1

F

∑
T

∑
F

[
Lmag(t, f)(1 +Wecho(t, f)) + Lpha(t, f)

]
. (7)

When the echo component of a certain TF-bin is larger, the MSE
weight of this TF-bin will also become larger without manual ad-
justment. The lower the SER, the more likely it is to suppress the
echo; the higher the SER, the less the echoes are weighted.

To further improve the amount of echo suppression and ensure
the perceptual quality, we make use of the VAD information as fol-
lows.

Wvad(t) = GS(Pt) ·WT
fix

Lmask =
1

T

1

F

∑
T

∑
F

||S(t, f)|p − |Ŝ(t, f)|p · Wvad(t)|2, (8)

we use the GS (Gumbel SoftMax) as a continuous, differentiable
approximation to arg max [24]. The fixed weight Wfix = [0, 1]1×2

andWvad ∈ RT×1. Lmask can punish wrong judgment on VAD of a
certain frame, thus reducing near-end over suppression.

The loss function we finally used in the submitted system is
Lfinal = Lecho + 0.2 · Lmask + 0.1 · Lvad. (9)

3. EXPERIMENTS

3.1. Dataset

In our experiments, train-clean-100 and train-clean-360 from Lib-
rispeech [25], which has a sampling rate of 16k Hz, together with the
speech data from DNS-Challenge [26], which has a sampling rate of
both 16k and 48k Hz, are used as near-end signal and reference sig-
nal. For the noise signal, we use the noise data from DNS-Challenge,
which has a sampling rate of both 16k and 48k Hz. For the echo sig-
nal, we use all the synthetic echo signals and real far-end single-talk
recordings provided by the AEC-Challenge, which covers a variety
of voice devices and echo signal delay. Furthermore, we also use
the speech from Librispeech and DNS dataset to simulate echo data
by convolving with simulated room impulse response (RIR). We use
the HYB method described in [27] instead of the image method to
generate 20,000 RIRs. The data generation scheme and the specific
configuration such as room size of the RIRs are described in [9].

The training set has 860 h data in total, which contains 460 h
data with simulated echo and 400 h data with real-recorded echo.
Development and test set share the same generating method with
training set, which contain 30 h and 15 h data, respectively. The
source data among these three sets has no overlap.

3.2. Performance metrics

Echo suppression performance is evaluated in terms of echo return
loss enhancement (ERLE) (defined in Eq. (10)) and wide-band per-
ceptual evaluation of speech quality (WB-PESQ) [28] for single-talk
(ST) periods and double-talk (DT) periods, respectively. The AEC-
Challenge also provides mean opinion score (MOS) results based
on the ITU-T Recommendations P.831, P.832 and P.808 [29]. The
official ranking is based on the score which reflects both MOS and
speech recognition WAcc [16].

ERLE = 10 log10

[∑
n

d2full(n)/
∑
n

ŝ2full(n)

]
(10)

3.3. Experimental setup

Window length and hop size are 20 ms and 10 ms, respectively, re-
sulting in 30 ms overall algorithmic latency. We apply 320-point



Table 2. Echo suppression performance. DT: double talk, ST: single-talk, NE: near-end, FE: far-end. WB-PESQ used for DT and ST-NE
scenarios and ERLE used for ST-FE scenario in both simulated test set (ST-FE) and ICASSP 2022 blind test set (Blind).

Method TDE Signal Loss DT ST-NE ST-FE Blind Data

SNR (in dB) 5 +∞ 5 +∞ +∞
SER (in dB) -5 5 15 -5 5 15 +∞ -5 5 15

Input - - - 1.42 1.78 1.99 1.58 2.24 2.87 2.10 4.50 0 -
GCCRN × DX Lcmse 1.83 2.25 2.37 2.15 2.79 3.18 2.48 3.55 30.22 30.17 22.47 21.76
GCCRN × EX-M Lcmse 2.06 2.43 2.58 2.37 2.96 3.36 2.66 3.71 36.03 35.15 28.61 27.25
GFTNN × EX-M Lplcpa 2.12 2.51 2.66 2.45 3.07 3.46 2.72 3.75 44.63 43.13 39.62 32.57
GFTNN × EX-M Lecho 2.20 2.59 2.74 2.57 3.22 3.61 2.81 3.77 82.38 76.46 67.30 58.63 460h
GFTNN × DEY -M Lecho 2.27 2.66 2.83 2.62 3.24 3.65 2.91 4.14 96.69 97.52 90.37 80.45
GFTNN X DEY -M Lecho 2.32 2.67 2.82 2.72 3.30 3.65 2.93 4.35 95.50 95.16 89.29 76.77
GFTNN X DEY -W Lecho 2.38 2.74 2.85 2.74 3.32 3.70 2.99 4.35 78.24 71.33 64.25 62.32
GFTNN Lecho 2.44 2.80 2.96 2.79 3.36 3.73 3.04 4.35 82.36 76.71 67.69 67.98

GFTNN-VAD X DEY -W Lfinal 2.43 2.78 2.94 2.78 3.34 3.72 3.01 4.33 81.37 76.28 65.80 70.86 860h
GFTNN-VAD-L Lfinal 2.44 2.78 2.94 2.81 3.37 3.73 3.02 4.34 84.96 83.85 77.63 79.28

Table 3. Subjective ratings in terms of MOS and WAcc for the blind
test set of the AEC-challenge. The confidence interval is 0.02. DT-
Echo DMOS: echo annoyance DMOS for DT scenario. DT-Other
DMOS: other impairments DMOS of DT scenario [29].

Method ST-NE
MOS

ST-FE
DMOS

DT-ECHO
DMOS

DT-Other
DMOS WAcc Score

Baseline [16] 4.152 4.563 4.122 3.563 0.659 0.752
GFTNN-VAD-L 4.238 4.801 4.711 4.257 0.817 0.864

STFT to each signal to produce the complex spectra. Chunk size of
our generated data is set to 10 s. Hyper-parameter p is set to 0.5 for
Lmag and Lpha. We compare different models with various configu-
rations, as shown in Table 2. Here Lcmse refers to the loss function
used in [14] and Lplcpa = Lmag + Lpha. DX means we directly
feed the microphone signal and the near-end speech signal into the
network, without using any DSP-based linear AEC. *-M/W means
using MDF/wRLS as the adaptive filter respectively. All neural mod-
els are trained with the Adam optimizer [30] for 60 epochs with an
initial learning rate of 1e-4, and the learning rate is halved if there is
no loss decrease on development set for 2 epochs. The convolution
kernels move with a stride of (1, 2). The number of output channels
for each layer in encoder/decoder is 80 for GFTNN and GFTNN-
VAD, and 128 for GFTNN-VAD-L. The whole size of the submitted
model (GFTNN-VAD-L) is 4.7912M in parameters. Tested on In-
tel(R) Xeon(R) Platinum 8163 CPU@2.50GHz quad-core machine,
the total real time factor (RTF) of our submitted model is 0.1706,
which is composed of 0.1306 for the GFTNN post-filter and 0.04 for
the DSP part, including sub-band decomposition, adaptive filter and
synthesize. Some of the processed audio clips can be found in our
demo page1.

3.4. Results and analysis

From Table 2, we first see that the use of an adaptive filter (lin-
ear AEC) is beneficial – directly using a neural network for AEC
leads to inferior performance (comparing DX with EX/DEY ). We
also notice that replacing Lplcpa with Lecho improves both PESQ and
ERLE a lot, which proves that weighting the MSE by echo is very
beneficial. Consistent with [31], replacing the input signals EX with
DEY leads to improved PESQ and ERLE in each scenario. In real
recordings of ST-NE scenario [16], the reference signal x(n) may
be completely irrelevant to microphone signal d(n). This means
that the performance of the neural AEC may be affected if the input
signals contains X (such as DX and EX), because unlike the DSP

1https://echocatzh.github.io/GFTNN

methods, it is difficult for a neural network to find consistent rules
for such uncorrelated input combinations. This also explains why
the input combination DEY has better performance than the other
two combinations. The distortion in the subband decomposition and
synthesis process makes the PESQ upper limit to be 4.35. When the
SER = +∞ and SNR = +∞, which means the clean signal, the use
of the TDE module in the GFTNN post-filter improves the percep-
tual quality of speech (PESQ >= 4.3). Comparing the two linear
AEC algorithms (DEY-W vs. DEY-M) in our two-stage framework,
wRLS leads to better performance than MDF due to its better con-
vergence. Finally, the larger model GFTNN-VAD-L shows gener-
ally superior performance. We process the blind test clips using this
model and submit to the challenge.

There are three observations we would like to explain further.
First, replacing DEY -M with DEY -W results in almost 20 dB de-
cline in ERLE despite of improvement on PESQ. In fact, there is no
obvious difference in subjective listening performance when ERLE
is greater than 60 dB. Second, the VAD module does not lead to
better PESQ, but we find that many emotional clips in the blind test
set are not over-suppressed because of the use of the VAD module.
The better perceptual listening performance on these clips indicates
that the network can effectively learn to distinguish speech frame
from non-speech frame. Finally, we find that when x(n) is uncorre-
lated with d(n), the complex-valued neural network will cause dis-
tortion to the estimated ŝ(n). Hence in this paper, we no longer use
complex-valued structure.

The officially released results on the blind test set in Table 3
show that our method significantly outperforms the challenge base-
line with absolute 0.158 WAcc gain and 0.112 score gain. In other
words, our system ranked the 1st place in WAcc and the 3rd place in
mean opinon score (MOS) and the final score.

4. CONCLUSIONS

This paper introduces our linear AEC + neural post-filter system sub-
mitted to the ICASSP 2022 AEC challenge. With the help of the
specifically designed network structure GFTNN, multi-task learning
with VAD and echo-aware loss function, our proposed AEC sys-
tem can achieve better echo cancellation and noise suppression per-
formance while ensuring that the near-end speech is not over sup-
pressed. Our submitted system manages to rank the 3rd place in the
challenge with good subjective quality (MOS) and speech recogni-
tion accuracy (WAcc). In future work, we will explore whether our
echo-aware weighting loss can be transferred to related tasks like
target speaker extraction (TSE), and explore more cascade schemes.
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