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ABSTRACT

Audio-text retrieval based on natural language descriptions is a
challenging task. It involves learning cross-modality alignments
between long sequences under inadequate data conditions. In this
work, we investigate several audio features as well as sequence
aggregation methods for better audio-text alignment. Moreover,
through a qualitative analysis we observe that semantic mapping
is more important than temporal relations in contextual retrieval.
Using pre-trained audio features and a descriptor-based aggrega-
tion method, we build our contextual audio-text retrieval system.
Specifically, we utilize PANNs features pre-trained on a large sound
event dataset and NetRVLAD pooling, which directly works with
averaged descriptors. Experiments are conducted on the AudioCaps
and CLOTHO datasets, and results are compared with the previous
state-of-the-art system. With our proposed system, a significant im-
provement has been achieved on bidirectional audio-text retrieval,
on all metrics including recall, median and mean rank.
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1. INTRODUCTION

Large quantities of data are generated and shared in public or pri-
vate databases at an accelerating pace. Accordingly, there is a high
demand for improved contextual search capabilities. Whilst active
research addresses such issues in the domain of image [1] and video
[2] retrieval, limited attention has been paid to audio retrieval from
unstructured text, or vice versa.

Audio-text retrieval has undergone a trend from short to long
audio clips, from structured labels to unconstrained natural language
in context. Short audios such as sound effects retrieval from free-
form text has been proposed as early as in 2008 [3]. As expected,
this approach can only retrieve short clips using single-word audio
tags. Recently, [4] adopted a siamese network to enable cross-modal
retrieval by learning joint embeddings from a shared lexico-acoustic
space. While their method is still limited to rather short audio clips,
it allows for more complex text queries such as class-labels. Nev-
ertheless, for real-world applications, retrieving audio clips of any
length using caption-like sentence queries would be desirable. The
development of audio captioning datasets such as AudioCaps [5] or
CLOTHO [6] has led to the facilitation of caption-based audio re-
trieval. On this basis, [7] proposed the task of long audio retrieval
from unconstrained natural language queries. By employing the
two text-video retrieval frameworks Mixture-of-Embedded Experts
(MoEE) [8] and Collaborative-Experts (CE) [2], they obtained first
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results on AudioCaps and CLOTHO. However, as mentioned by the
authors, there is still room for improvements, in particular better rep-
resentations and cross-modal alignment.

For cross-modal retrieval, the semantically invariant construc-
tion of embeddings into a common vector space exhibits a major
challenge, especially when long sequential audio inputs are involved.
Usually, this process consists of two main stages: feature extrac-
tion and sequence aggregation. After independent feature extrac-
tion, embedding sequences of both modalities are obtained. Then in
the sequence aggregation stage, the embedding sequence is trans-
formed into a single vector for further cross-modality alignment.
For small data scenarios, extracting effective features is quite dif-
ficult. Hence, by taking advantage of pre-trained models, the extrac-
tion process itself can be built to consider semantic information. At
the aggregation stage, parameter-free methods such as mean pool-
ing or max pooling are common strategies, while more sophisticated
techniques emphasizing contextual or temporal information are less
investigated.

In this study, we demonstrate that pre-trained contextual au-
dio features outperform previous commonly-used static features,
e.g. log-mel spectrogram (LMS) and mel-frequency cepstrum co-
efficient (MFCC). We also reveal that descriptor-based aggregation
methods perform better than parameter-free and temporal model-
ing approaches. Specifically, we consider PANNs [9] for improved
feature extraction together with NetRVLAD [10] for enhanced ag-
gregation, leading to a sizeable performance improvement compared
with the previous contextual audio-text retrieval study [7].

2. CROSS-MODAL REPRESENTATION AND ALIGNMENT

The goal of text-to-audio retrieval task is to retrieve the most rele-
vant audio clip(s) from an audio database given a text query (natural
language descriptions). Similarly, audio-to-text retrieval aims at us-
ing an audio query to retrieve corresponding caption(s). Given a
collection of audio samples AAA and their corresponding captions CCC,
an audio-caption common embedding space is learned via separately
encoding the two modalities. We calculate cosine similarity s(i, j)
betweenCCCi ∈ CCC andAAAj ∈ AAA as a ranking score, where a high score
stands for matching pairs and a low one for irrelevant pairs.

Our proposed framework comprises three main steps as illus-
trated in Figure 1. First, audio and word embeddings are extracted
from the input audio signal and tokens respectively. Second, the
embeddings are aggregated at the pooling stage, then projected by
means of fully connected (FC) layers and subsequently enhanced
through a context gating module. Third, cosine similarity is com-
puted based on normalized audio and sentence representations.

As audio and text inputs are long data streams without explicit
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Fig. 1. Framework for audio-text retrieval. FC denotes a Fully-
Connected layer.

matching, the crucial technique that lies in this framework is cross-
modal contextual representation and the alignment between the two.
For better cross-modal alignment, we propose to acquire contex-
tual embeddings via pre-trained models from both modalities (Sec-
tion 2.1) and investigate effective aggregation strategies for the align-
ment purpose (Section 2.2).

2.1. Contextual representations via pre-trained models

Pre-trained word2vec [11] is employed for the extraction of text fea-
tures. Thus, each caption CCCi ∈ RNi×300, where Ni denotes the
number of words, can be written asCCCi = (ttti1, ttt

i
2, . . . , ttt

i
Ni

)>, where
(tttil)l=1,...,Ni ⊆ R300 are the respective embedding sequences.

In terms of audio embeddings, we adopt pre-trained audio neural
networks (PANNs) [9] trained on AudioSet [12], which has shown
excellent performance in audio-related tasks such as audio tagging.
In this work, we exploit 14-layer PANNs (CNN14) and the output
before the global pooling is employed. Compared with previously
adopted pre-trained audio features such as VGGish [13] or ResNet
18 [14], PANNs is trained on a larger dataset AudioSet [12], which
consists of a wide range of sound events.

The output feature is a collection of 2048-dimensional segment
embeddings, with each segment presenting 0.32s duration audio con-
tent. Thus, for each audio AAAj ∈ RMj×d, where Mj denotes the
number of audio segments and d denotes the feature dimension, a
sequence of segment embeddings (aaajt)t=1,...,Mj ⊆ Rd is obtained,
such thatAAAj = (aaaj1, aaa

j
2, . . . , aaa

j
Mj

)>.

2.2. Aggregation for cross-modal alignment

The pooling module aggregates sentence embeddings CCCi and audio
embeddings AAAj into respective single vector representations. We
compare three aggregation strategies: parameter-free, temporal and
descriptor-based.

2.2.1. Parameter-free methods

Mean pooling. This method averages the sequence embeddings to
obtain the “average audio” and “average word”. The output can be
written as

CCCi
mean =

1

Ni

Ni∑
l=1

tttil, AAAj
mean =

1

Mj

Mj∑
t=1

aaajt . (1)

Max pooling. Another strategy is to collect the maximum value
among audio frames and words. This method can preserve the most
important information along the temporal dimension. The output is
denoted as

CCCi
max = max

l∈{1,...,Ni}
tttil, AAAj

max = max
l∈{1,...,Mj}

aaajl . (2)

2.2.2. Temporal pooling method

LSTM + mean pooling. Compared with parameter-free pooling
methods, recurrent neural networks prove effective for treating se-
quential features. Due to its strong capability of modeling temporal
dependencies, we employ Long Short Term Memory (LSTM) net-
work [15], providing the output

CCCi
tmp = (tttitmp,1, . . . , ttt

i
tmp,Ni

)> = LSTM(CCCi),

AAAj
tmp = (aaajtmp,1, . . . , aaa

j
tmp,Mj

)>= LSTM(AAAj).
(3)

Afterwards, mean pooling is applied by replacing CCCi and AAAj in
Eq. (1) byCCCi

tmp andAAAj
tmp respectively.

2.2.3. Descriptor-based pooling methods

NetVLAD. Compared with Vector of Locally Aggregated De-
scriptors (VLAD) [10] encoding, NetVLAD [16] enables back-
propagation by adopting soft assignment to clusters and has shown
outstanding performance in visual-related retrieval tasks [8, 17].
Given local descriptors xxx = (xxx1, . . . ,xxxN )> ∈ RN×M as inputs
and K cluster centers ccc = (ccc1, . . . , cccK)> ∈ RK×M as VLAD
parameters, the NetVLAD descriptor output VVV = (Vjk) ∈ RK×M

is

Vjk =

N∑
i=1

exp
(
wwwT

kxxxi + bk
)∑

k′ exp
(
wT

k′xxxi + bk′
) (xxxij − ccckj), (4)

wherewwwk, bk and ccck are trainable parameters.
NetRVLAD. Introduced in [17], NetRVLAD is a simplified version
of NetVLAD, which directly works with averaged descriptors. It re-
duces the number of trainable parameters compared with NetVLAD.
The NetRVLAD descriptor outputRRR = (Rjk) ∈ RK×M is given by

Rjk =

N∑
i=1

exp
(
wwwT

kxxxi + bk
)∑

k′ exp
(
wT

k′xxxi + bk′
)xxxij (5)

Finally, we reshape VVV andRRR to single vector representations

VVV = (V11, V12, . . . , V1M , . . . , VKM )>,

RRR = (R11, R12, . . . , R1M , . . . , RKM )>.
(6)

With input CCCi and AAAj , the outputs CCCi
vlad (CCCi

rvlad ) and AAAj
vlad

(AAAj
rvlad ) are obtained through Eqs. (4)–(6). Clusters in descriptor-

based methods can be viewed as semantic information. Therefore,
descriptor-based methods map the audio and text embeddings into
several semantic clusters for cross-modal alignment.

3. EXPERIMENTS

3.1. Experiment settings

3.1.1. Datasets

We use AudioCaps [5] and CLOTHO [6] datasets in our experi-
ments. AudioCaps contains about 49K audio samples, which are
approximately 10 s long. Each audio is annotated with one sentence
in the training set and five sentences in the validation and test set.
We keep the same test pool of 816 samples as [7]. Unlike [7], the
lastest CLOTHO version 2.1 is used in this work. It consists of 6974
audio samples, which are of 15 s to 30 s long. Each audio sample is
annotated with 5 sentences. The number of training, validation and
test samples are 3839, 1045 and 1045 respectively.



3.1.2. Evaluation metrics

We employ recall at K (R@K, higher is better), median rank (Medr,
lower is better) and mean rank (MnR, lower is better) as evaluation
metrics. R@K is denoted as the percentage of correct matching in
top-k retrieved results. These metrics are commonly used in retrieval
tasks, e.g. text-video retrieval [2]. Results of mean and standard de-
viation based on three randomly seeded runs are also reported.

3.2. Implementation details

3.2.1. Gate module

After the pooling module, the aggregated audio and caption repre-
sentations are further embedded into Rd, where d stands for audio
feature dimension, by means of one single FC layer respectively.
This provides feature vectorsXXX ∈ Rd, which are passed to the Con-
text Gating module [1]:

YYY = σ(WWWXXX + bbb)�XXX. (7)

In Eq. (7), the element-wise sigmoid activation function is denoted
by σ, element-wise multiplication is indicated by �, while WWW ∈
Rd×d and bbb ∈ Rd are trainable parameters.

3.2.2. Loss function

Caption and audio representationsYYY i
C andYYY j

A obtained from Eq. (7)
are further normalized. Then, cosine similarity between i-th caption
and j-th audio is

s(i, j) = YYY i
C · (YYY j

A)
>. (8)

For training, bi-directional max margin ranking loss [18] is em-
ployed:

L =
1

B

B∑
i=1

∑
j 6=i

[lc(i, j) + la(i, j)] , (9)

wherein B is the batch size and for margin m we denoted

lc(i, j) := max(0,m+ s(i, j)− s(i, i)),
la(i, j) := max(0,m+ s(j, i)− s(i, i)).

(10)

Hereby, lc(i, j) corresponds to the negative caption-audio pairs for
each given caption query, while la(i, j) accounts for the negative
caption-audio pairs for each given audio query. Therefore, the simi-
larity between a caption-audio pair s(i, i) is higher than any negative
pairs by at least margin m. During training, we use mini-batch for
computational feasibility.

3.2.3. Hyper-parameters

The batch size for training is 128, and m in Eq. (9) is set to 0.2. The
learning rate is 0.01, with a weight decay of 0.001. For LSTM, we
use one hidden layer of size d. As for NetVLAD and NetRVLAD,
we use 20 VLAD clusters for text and 12 for audio.

4. RESULTS

4.1. Influence of audio representations

We first compare the influence of different audio representations by
comparing the proposed PANNs feature with static LMS and contex-
tual features in previous work, extracted from pre-trained VGGish
and ResNet18. We use NetRVLAD as the aggregation method for
all audio representations. The results (listed in Table 1) show that

Text =⇒ Audio Audio =⇒ Text
Model R@1↑ R@10↑ R@1↑ R@10↑

AudioCaps
LMS 3.3±0.2 19.4±1.0 3.0±0.4 17.9±1.2

Vggish [13] 15.6±0.1 59.0±1.3 16.1±0.6 57.6±0.7

ResNet18 [19] 20.6±0.3 68.1±0.4 24.8±1.0 70.3±1.2

CNN14 [9] 29.3±0.3 79.3±1.0 33.3±0.5 80.6±0.8

CLOTHO
LMS 1.0±0.1 8.0±0.4 0.6 ±0.3 5.6±0.7

Vggish [13] 5.8±0.2 29.1±0.2 6.0 ±0.6 28.7±1.0

ResNet18 [19] 8.1±0.2 35.8±0.6 8.5 ±0.2 37.2±0.2

CNN14 [9] 13.1±0.2 45.1±0.3 13.0±0.2 45.4±0.8

Table 1. Audio-Caption retrieval results with different pre-trained
audio encoding models. R@K is Recall@K (higher is better).

Text =⇒ Audio Audio =⇒ Text
Model R@1↑ R@10↑ R@1↑ R@10↑

AudioCaps
Mean Pooling 25.8±0.2 74.4±0.3 29.0±0.8 76.2±0.4

Max Pooling 24.3±0.3 73.9±0.1 25.8±0.6 75.4±0.9

LSTM 25.8±0.3 76.1±1.0 29.1±2.0 75.3±1.3

NetVLAD 29.1±0.3 78.8±0.9 32.8±1.2 79.0±1.2

NetRVLAD 29.3±0.3 79.3±1.0 33.3±0.5 80.6±0.8

CLOTHO
Mean Pooling 9.8±0.2 39.5±0.0 10.1±0.7 39.3±0.7

Max Pooling 11.2±0.2 41.9±0.2 11.3±0.7 42.6±1.1

LSTM 9.1±0.4 36.9±0.4 9.2±0.7 37.6±0.8

NetVLAD 12.6±0.1 45.1±0.5 12.8±0.1 45.3±0.4

NetRVLAD 13.1±0.2 45.1±0.3 13.0±0.2 45.4±0.8

Table 2. Audio-Caption retrieval results based on different aggrega-
tion strategies. R@K is Recall@K (higher is better).

feature extraction using pre-trained models, compared with LMS,
significantly improves the retrieval performance. Among the con-
sidered pre-trained models, we observe that PANNs leads to bet-
ter results than VGGish and ResNet18 as utilized in [7]. This indi-
cates that pre-training on a comparably large dataset with much more
sound event types leads to performance improvements. Accordingly,
our subsequent comparison of aggregation strategies is solely based
on PANNs feature.

4.2. Influence of aggregation methods

Our evaluation results for several aggregation methods (Section 2.2)
are reported in Table 2. For the sake of comparison, the output size
of the pooling module is fixed to 2048. Max pooling outperforms
mean pooling on CLOTHO, but no improvements are observed on
AudioCaps. We suspect this outcome to be a consequence of limited
sound event types included in CLOTHO. Compared with parameter-
free methods, LSTM aggregation does not improve performance.
However, descriptor-based aggregation strategies improve the results
to a large extent on both datasets. This indicates that mapping au-
dio and text to the same semantic concepts is much more important
than temporal relations in contextual audio-text retrieval. Moreover,
NetRVLAD slightly outperforms NetVLAD. With fewer trainable
parameters, NetRVLAD is less prone to over-fitting, leading to bet-
ter performance.



Audio Query: Prep Rally.wav Audio Query: Neighborhood Bird Ambiance 3.wav

Rank
Score

Retrieved Text Rank
Score

Retrieved Text

1
0.802

A group of people clapping listen to a band of
some sort.

1
0.783

Different groups of birds are chirping to each other.

2
0.760

A group of men sing a fight song and then they clap
and cheer.

2
0.771

Different kinds of birds are chirping to one another
simultaneously.

3
0.752

A group of men sing a fight song and then there is
clapping and cheering.

3
0.769

The different groups of birds are chirping to one an-
other.

4
0.749

A crowd cheers and claps as music finishes being
played.

15
0.685

Several birds singing and chirping outside in an
open area.

Table 3. Retrieve Caption based on Audio Query on CLOTHO. Left: The correct caption is identified. Right: The correct caption is not
identified among the top results, but the listed top three results describe the same sound event as the input audio (bird chirping).

Text =⇒ Audio Audio =⇒ Text
Model R@1↑ R@5↑ R@10↑ Med r↓ R@1↑ R@5↑ R@10↑ Med r↓

AudioCaps
MoEE [7] 22.5±0.3 54.4±0.6 69.5±0.9 5.0±0.0 25.1±0.8 57.5±1.4 72.9±1.2 4.0±0.0

CE [7] 23.1±0.8 55.1±0.9 70.7±0.7 4.7±0.6 25.1±0.9 57.1±1.0 73.2±1.0 4.0±0.0

CNN14+NetRVLAD (Ours) 29.3±0.3 65.2±0.5 79.3±1.0 3.0±0.0 33.3±0.5 67.6±0.5 80.6±0.8 3.0±0.0

CLOTHO
MoEE [7] 8.5±0.1 26.5±0.1 38.2±0.9 19.3±0.6 9.7±0.4 27.0±0.1 38.7±0.6 17.3±0.6

CE [7] 9.0±0.4 26.8±0.2 38.6±0.6 18.0±0.0 9.4±0.9 27.2±1.5 39.6±1.5 17.0±1.0

CNN14+NetRVLAD (Ours) 13.1±0.2 33.1±0.6 45.1±0.2 13.0±0.0 13.0±0.2 32.9±0.7 45.4±0.8 13.0±0.0

Table 4. Our audio-caption retrieval results compared with [7]. We re-evaluated the retrieval results of MoEE and CE on updated CLOTHO
dataset to allow a fair comparison. R@K is Recall@K (higher is better), Med r is Median Rank (lower is better).

4.3. Qualitative results

To investigate how semantic expressions and audio features are
aligned, we collect the morphological features of each word. In
both datasets, only small fractions of captions contain temporal
adverbials, among which 94% of the words exhibit no distinct se-
quential information. For example, considering the audio sample
corresponding to the annotation A woman talks nearby as water
pours, two sound events woman talks and water pours have no se-
quential order. The model, therefore, tends to match the audio and
sentence based on the occurrence of sound event. Table 3 shows
two text retrieval examples based on a audio query. Most of the top
retrieval sentences can well describe the given audio. Especially
for the failure example in the right column of Table 3, the top three
retrievals are all semantically aligned with the given audio.

4.4. Comparison with state-of-the-art

Based on pre-trained CNN14 features and NetRVLAD aggregation,
we build our audio-text retrieval system. In Table 4, we compare
the performance of our system on AudioCaps and CLOTHO with
previous work on contextual audio-text retrieval [7]. To enable a fair
comparison, all models are re-evaluated on the updated CLOTHO
dataset. Our method significantly improves among all aspects upon
the baseline set by [7] on both AudioCaps and CLOTHO.

5. CONCLUSIONS

We investigated two crucial components in audio-text retrieval:
feature representation and sequence aggregation. Preserving au-
dio events information in the final audio representations is the
key for successful retrieval, which can be achieved by adopting
powerful pre-trained models and suitable pooling methods. Our
experiments show that features extracted by models pre-trained on
large-scale audio event datasets significantly improve the retrieval
performance. Descriptor-based aggregation approach outperforms
parameter-free and temporal modeling approaches. It indicates that
audio-text retrieval attaches little importance to temporal relations
but relies heavily on semantic mapping. Overall, our approach of
incorporating PANNs features combined with NetRVLAD delivers
state-of-the-art performance for audio-text retrieval, hereby provid-
ing additional directions for further research and contributing to the
promotion of content-based retrieval solutions.
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