
1

Fast Multiscale Diffusion on Graphs
Sibylle Marcotte, Amélie Barbe, Rémi Gribonval, Titouan Vayer,

Marc Sebban, Pierre Borgnat, Paulo Gonçalves

Abstract—Diffusing a graph signal at multiple scales requires
computing the action of the exponential of several multiples of
the Laplacian matrix. We tighten a bound on the approximation
error of truncated Chebyshev polynomial approximations of the
exponential, hence significantly improving a priori estimates of
the polynomial order for a prescribed error. We further exploit
properties of these approximations to factorize the computation
of the action of the diffusion operator over multiple scales, thus
reducing drastically its computational cost.

Index Terms—Approximate computing, Chebyshev approxi-
mation, Computational efficiency, Estimation error, Polynomials

I. INTRODUCTION

THE matrix exponential operator has applications in nu-
merous domains, ranging from time integration of Or-

dinary Differential Equations [1] or network analysis [2] to
various simulation problems (like power grids [3] or nuclear
reactions [4]) or machine learning [5]. In graph signal pro-
cessing, it appears in the diffusion process of a graph signal
– an analog on graphs of Gaussian low-pass filtering.

Given a graph G and its combinatorial Laplacian matrix L,
let x be a signal on this graph (a vector containing a value at
each node), the diffusion of x in G is defined by the equation
dw
dτ = −L · w with w(0) = x [6]. It admits a closed-form
solution w(τ) = exp(−τL)x involving the heat kernel τ →
exp(−τL), which features the matrix exponential.

Applying the exponential of a matrix M ∈ Rn×n to a
vector x ∈ Rn can be achieved by computing the matrix
B = exp(M) to compute then the matrix-vector product Bx.
However, this becomes quickly computationally prohibitive
in high dimension, as storing and computing B, as well as
the matrix-vector product Bx, have cost at least quadratic
in n. Moreover, multiscale graph representations such as
graph wavelets [7], graph-based machine learning methods
[5], rely on graph diffusion at different scales, thus implying
applications of the matrix exponential of various multiples of
the graph Laplacian.

To speedup such repeated computations one can use a well-
known technique based on approximations of the (scalar)
exponential function using Chebyshev polynomials. We build
on the fact that polynomial approximations [8] can signif-
icantly reduce the computational burden of approximating
exp(M)x with good precision when M = −τL where L

Work supported by the ACADEMICS grant of the IDEXLYON, project of
the Université de Lyon, PIA operated by ANR-16-IDEX-0005.

S. Marcotte is with ENS Rennes. France (email: sibylle.marcotte@ens-
rennes.fr). A. Barbe, R. Gribonval, T.Vayer and P. Gonçalves are with
Université de Lyon, Inria, CNRS, ENSL, LIP, Lyon; P. Borgnat is with
Université de Lyon, ENSL, CNRS, Laboratoire de Physique, Lyon, France
(emails: first.last@ens-lyon.fr). M. Sebban is with Univ Lyon, UJM-Saint-
Etienne, CNRS, Institut d Optique Graduate School, Laboratoire Hubert
Curien, Saint-Etienne, France (email: marc.sebban@univ-st-etienne.fr).

is sparse positive semi-definite (PSD); this is often the case
when L is the Laplacian of a graph when each node is
connected to a limited number of neighbors. The principle
is to approximate the exponential as a low-degree polyno-
mial in M, exp(M) ≈ p(M) :=

∑K
k=0 akM

k. Several
methods exist, some requiring the explicit computation of
coefficients associated with a particular choice of polynomial
basis, others, including Krylov-based techniques, not requiring
explicit evaluation of the coefficients but relying on an iterative
determination [9] of the polynomial approximation on the
subspace spanned by

{
x,Mx, · · · ,MKx

}
.

Our contribution is twofold. First, we devise a new bound on
the approximation error of truncated Chebyshev expansions of
the exponential, that improves upon existing works [10], [11],
[12]. This avoids unnecessary computations by determining
a small truncation order K to achieve a prescribed error.
Second, we propose to compute exp(−τL) at different scales
τ ∈ R faster, by reusing the calculations of the action
of Chebyshev polynomials on x and combining them with
adapted coefficients for each scale τ . This is particularly
efficient for multiscale problems with arbitrary values of τ ,
unlike [13] which is limited to linear spacing.

The rest of this document is organized as follows. In
Section II we describe univariate function approximation
with Chebyshev polynomials, and detail the approximation of
scaled univariate exponential functions with new bounds on
the coefficients (Corollary II.2). This is used in Section III to
approximate matrix exponentials with controlled complexity
and controlled error (Lemma III.1), leading to our new error
bounds (17), (18), (19). Section IV is dedicated to an exper-
imental validation, with a comparison to the state-of-the-art
bounds of [11], and an illustration on multiscale diffusion.

II. CHEBYSHEV APPROXIMATION OF THE EXPONENTIAL

The Chebyshev polynomials of the first kind are charac-
terized by the identity Tk(cos(θ)) = cos(kθ). They can be
computed as T0(t) = 1, T1(t) = t and using the following
recurrence relation:

Tk+2(t) = 2tTk+1(t)− Tk(t). (1)

The Chebyshev series decomposition of a function f :
[−1, 1] 7→ R is: f(t) = c0

2 +
∑
k≥1 ck · Tk(t), where the

Chebyshev coefficients are:

ck =
2

π

∫ π

0

cos(kθ) · f(cos(θ))dθ. (2)

Truncating this series yields an approximation of f . For
theoretical aspects of the approximation by Chebyshev polyno-
mials (and other polynomial basis) we refer the reader to [14].

ar
X

iv
:2

10
4.

14
65

2v
1

 [
ee

ss
.S

P]
 2

9
A

pr
 2

02
1

2

A. Chebyshev series of the exponential

We focus on approximating the univariate transfer function
hτ : λ ∈ [0, 2] 7→ exp(−τλ), which will be useful to obtain
low-degree polynomial approximations of the matrix expo-
nential exp(−τL) for positive semi-definite matrices whose
largest eigenvalue satisfies λmax = 2 (see Section III).

Using a change of variable:
t = (λ− 1) ∈ [−1, 1], h̃τ (t) = hτ (t+ 1)
and the Chebyshev series of f := h̃τ yields:

h̃τ (t) =
1

2
c0(τ) +

∞∑
k=1

ck(τ)Tk(t),

ck(τ) =
2

π

∫ π

0

cos(kθ) exp(−τ(cos(θ) + 1))dθ. (3)

This leads to the following expression for hτ :

hτ (λ) =
1

2
c0(τ) +

∞∑
k=1

ck(τ)T̃k(λ), (4)

where for any k ∈ N: T̃k(λ) = Tk (λ− 1).
Truncating the series (4) to order K yields a polynomial

approximation of hτ of degree K whose quality can be con-
trolled, leading to a control of the error in approximating the
action of exp(−τL) as studied in Section III. First we focus
on how to evaluate the coefficients ck defined in Equation (3).

B. Chebyshev coefficients of the exponential operator

Evaluating numerically the coefficients using the integral
formulation (3) would be computationally costly, fortunately
they are expressed using Bessel functions [15]:

ck(τ) = 2Ik(τ) · exp(−τ) = 2 · Iek(−τ), (5)

with Ik(·) the modified Bessel function of the first kind and
Iek(·) the exponentially scaled modified Bessel function of
the first kind.

The following lemma applied to f = h̃τ yields another
expression of the coefficients (3), which will be used to bound
the error of the truncated Chebyshev expansion.

Lemma II.1 ([14], Equation 2.91). Let f be a function
expressed as an infinite power series f(t) =

∑∞
i=0 ait

i and
assume that this series is uniformly convergent on [−1, 1].
Then, we can express the Chebyshev coefficients of f by:

ck =
1

2k−1

∞∑
i=0

1

22i

(
k + 2i

i

)
ak+2i. (6)

Corollary II.2. Consider h̃τ (t) := exp(−τ(t + 1)), t ∈
[−1, 1]. The coefficients of its Chebyshev expansion satisfy:

ck = (−1)kdk c̄k (7)

c̄k = 2 (τ/2)
k

exp(−τ)(k!)−1 (8)

dk =

∞∑
i=0

(τ/2)
2i k!

i!(k + i)!
. (9)

Moreover we have:

1 ≤ dk ≤ min

(
exp

(
(τ/2)2

k + 1

)
, cosh(τ)

)
. (10)

Proof. Denoting C = τ/2, we expand f(t) = h̃τ (t) =
exp(−2C(t + 1)) = exp(−2C) exp(−2Ct) into a power
series:

f(t) =

∞∑
i=0

exp(−2C)
(−2C)i

i!
ti.

Using Lemma II.1, we obtain for each k ∈ N:

ck = (−1)kCk2 exp(−2C)

∞∑
i=0

C2i 1

i!(k + i)!
= (−1)k c̄kdk.

For any integers k, i we have k!/(k+i)! ≤ min(1/i!, 1/(k+
1)i) and 1/(i!)2 =

(
2i
i

)
/(2i)! ≤ 22i/(2i)! hence

dk =

∞∑
i=0

C2i

i!

k!

(k + i)!

≤ min

(∞∑
i=0

C2i

i!

1

(k + 1)i
,

∞∑
i=0

C2i

i!i!

)

≤ min

(
exp

(
C2/(k + 1)

)
,

∞∑
i=0

C2i22i

(2i)!

)
= min

(
exp

(
C2/(k + 1)

)
, cosh(2C)

)
.

III. APPROXIMATION OF THE MATRIX EXPONENTIAL

The extension of a univariate function f : R → R to sym-
metric matrices L ∈ Rn×n exploits the eigen-decomposition
L = UΛU>, where Λ = diag(λi)1≤i≤n, to define the action
of f as f(L) := Udiag(f(λi))U

>. When f(t) = tk for some
integer k, this yields f(L) = Lk, hence the definition matches
with the intuition when f is polynomial or analytic.

The exponential of a matrix could be computed by taking
the exponential of the eigenvalues, but diagonalizing the ma-
trix would be computationally prohibitive. However computing
a matrix such as exp(−τL) is rarely required, as one rather
needs to compute its action on a given vector. This enables
faster methods, notably using polynomial approximations:
given a square symmetric matrix L and a univariate function
f , a suitable univariate polynomial p is used to approximate
f(L) with p(L). Such a polynomial can depend on both f and
L. When the function f admits a Taylor expansion, a natural
choice for p is a truncated version of the Taylor series [13].
Other polynomial bases can be used, such as the Padé poly-
nomials, or in our case, the Chebyshev polynomials [11], [16]
(see [17] for a survey), leading to approximation errors that
decay exponentially with the polynomial order K.

A. Chebyshev approximation of the matrix exponential

Consider L any PSD matrix of largest eigenvalue λmax = 2
(adaptations to matrices with arbitrary largest eigenvalue will
be discussed in the experimental section). To approximate
the action of exp(−τL), where τ ≥ 0, we use the matrix
polynomial pK(L) where pK(λ) is the polynomial obtained
by truncating the series (4). The truncation order K offers a
compromise between computational speed and numerical ac-
curacy. The recurrence relations (1) on Chebyshev polynomials
yields recurrence relations to compute T̃k(L)x = Tk(L−Id)x.
Given a polynomial order K, computing pK(L)x requires K

3

matrix-vector products for the polynomials, and K+ 1 Bessel
function evaluations for the coefficients. This cost is dominated
by the K matrix-vector products, which can be very efficient
if L is a sparse matrix.

B. Generic bounds on relative approximation errors

Denote pK the polynomial obtained by truncation at order
K of the Chebyshev expansion (4). For a given input vector
x 6= 0, one can measure a relative error as:

εK(x) :=
‖ exp(−τL)x− pK(L)x‖22

‖x‖22
. (11)

Expressing exp(−τL) and pK(L) in an orthonormal eigenba-
sis of L yields a worst-case relative error:

εK := sup
x 6=0

εK(x) = max
i
|hτ (λi)− pK(λi)|2 ≤ ‖hτ − pK‖2∞

(12)
with λi ∈ [0, λmax] the eigenvalues of L and ‖g‖∞ :=
supλ∈[0,λmax] |g(λ)|.

Lemma III.1. Consider τ ≥ 0, hτ as in Section II-A, and L
a PSD matrix with largest eigenvalue λmax = 2. Consider pK
as above where K > τ/2− 1. With C := τ/2 we have

‖hτ − pK‖∞ ≤ 2e
(τ/2)2

K+2 −τ
(τ/2)K+1

K!(K + 1− τ/2)
=: g(K, τ).

(13)

Proof. Denote C = τ/2. For K > C − 1 we have:
∞∑

k=K+1

Ck

k!
≤ 1

K!

∞∑
k=K+1

Ck

(K + 1)k−K
=
CK

K!

∞∑
`=1

C`

(K + 1)`

=
CK+1

K!(K + 1− C)
(14)

and C2/(K + 1) < C hence for k ≥ K + 1 (10) yields:

1 ≤ dk ≤ exp(C2/(K + 2)) ≤ exp(C). (15)

Since |Tk(t)| ≤ 1 on [−1, 1] (recall that Tk(cos θ) =
cos(kθ)), we obtain using Corollary II.2:

‖hτ − pK‖∞
(4)
= sup

λ∈[0,λmax]

∣∣∣∣∣
∞∑
k>K

ck(τ)T̃k(λ)

∣∣∣∣∣ ≤
∞∑
k>K

|dk c̄k|

(8),(15)
≤ exp

(
C2

K+2

)
2 exp (−2C)

∞∑
k>K

Ck

k!

(14)
≤ 2 exp

(
C2

K+2 − 2C
) CK+1

K!(K + 1− C)
.

While (11) is the error of approximation of exp(−τL)x,
relative to the input energy ‖x‖22, an alternative is to measure
this error w.r.t. the output energy ‖ exp(−τL)x‖22:

ηK(x) :=
‖ exp(−τL)x− pK(L)x‖22

‖ exp(−τL)x‖22
. (16)

Since ‖ exp(−τL)x‖2 ≥ e−τλmax‖x‖2 = e−2τ‖x‖2 we
have ηK(x) ≤ ‖hτ −pK‖2∞e4τ . Using Lemma III.1 we obtain
for K > τ/2− 1 and any x:

εK(x) ≤ g2(K, τ); (17)

ηK(x) ≤ g2(K, τ)e4τ . (18)

C. Specific bounds on relative approximation errors

As the bounds (17)-(18) are worst-case estimates, they may
be improved for a specific input signal x by taking into account
its properties. To illustrate this, let us focus on graph diffusion
where L is a graph Laplacian, assuming that a1 :=

∑
i xi 6= 0.

Since a1/
√
n is the inner product between x and the unit

constant vector (1, . . . , 1)/
√
n, which is an eigenvector of the

graph Laplacian L associated to the zero eigenvalue λ1 = 0,
we have ‖ exp(−τL)x‖22 ≥ |a1/

√
n|2. For K > τ/2− 1 this

leads to the bound:

ηK(x) ≤ εK(x)
‖x‖22
a21/n

≤ g2(K, τ)
n‖x‖22
a21

. (19)

This bound improves upon (18) if e4τ ≥ n‖x‖22
a21

, i.e. when

τ ≥ 1

4
log

n‖x‖22
a21

. (20)

IV. EXPERIMENTS

Considering a graph with Laplacian L, the diffusion of
a graph signal x at scale τ is obtained by computing
exp(−τL)x. In general, the largest eigenvalue of L is not
necessarily λmax = 2 (except for example if L is a so-
called normalized graph Laplacian, instead of a combinatorial
graph Laplacian). To handle this case with the polynomial
approximations studied in the previous section, we first ob-
serve that exp(−τL) = exp(−τ ′L′) where L′ = 2L/λmax

and τ ′ = λmaxτ/2. Using Equation (20) with scale τ ′ allows
to select which of the two bounds (18) or (19) is the sharpest.
The selected bound is then used to find a polynomial order
K that satisfies a given precision criterion. Then, we can
use the recurrence relations (2) to compute the action of the
polynomials T̃k(L′) = Tk(L′ − Id) on x [16], and combine
them with the coefficients ck(τ ′) given by (5).

A. Bound tightness

Our new bounds accuracy can be illustrated by plotting
the minimum truncated order K required to achieve a given
precision. The new bounds can be compared to the tightest
bound we could find in the literature [11]:

ηK(x) ≤ 4E(K)
2n‖x‖22

a21
(21)

where a1 =
∑
i xi, and:

E(K) =

e
−b(K+1)2

2τ

(
1 +

√
πτ/2
b

)
+ d2τ

1−d if K ≤ 2τ

dK

1−d if K > 2τ
(22)

with b = 2
1+
√
5

and d = exp(b)

2+
√
5

. This bound can be made
independent of x by using the same procedure as that of used
to establish (18):

ηK(x) ≤ 4E(K)2 exp(4τ). (23)

An experiment was performed over 25 values of τ ranging
from 10−2 to 102, 100 samplings of Erdos-Reyni graphs
of size n = 200, with connection probability p = 5%

4

10 2 10 1 100 101 102

100

101

102

103

K
Bound (18) (Our, generic)
Bound (19) (Our, specific)
Bound (21) (Ref [11], specific)
Bound (23) (Ref [11], generic)
Real required K

Fig. 1. Minimum order K to achieve an error ηK(x) below 10−5, either
real or according to each bound. Median values taken for 100 Erdos-Reyni
graphs of size 200 with 5% connection probability, and a centered standard
normal distributed signal.

(which yields λmax ' 20), and coupled with a random signal
with entries drawn i.i.d. from a centered standard normal
distribution. For each set of experiment parameters, for each
bound, generically noted B(K, τ, x), the minimum order K
ensuring ηK(x) ≤ B(K, τ, x) ≤ 10−5 was computed, as
well as the oracle minimum degree K guaranteeing MSE
ηK(x) ≤ 10−5. The median values over graph generations
are plotted on Fig 1 against τ , with errorbars using quartiles.

We observe that our new bounds (blue) follow more closely
the true minimum K (black) achieving the targeted precision,
up to τ ' 10, thus saving computations over the one of [11]
(red). Also of interest is the fact that the bounds (19)-
(21) specific to the input signal are much tighter than their
respective generic counterparts (18)-(23).

B. Acceleration of multiscale diffusion

When diffusing at multiple scales {τ1 · · · τm}, it is worth
noting that computations can be factorized. The order K
can be computed only once (using the largest τ ′i), as well
as T̃k(L′)x. Eventually, the coefficients can be evaluated
for all values τi to generate the needed linear combi-
nations of T̃k(L′)x, 0 ≤ k ≤ K. In order to illus-
trate this speeding-up phenomenon, our method is compared
to scipy.sparse.linalg.expm_multiply, from the
standard SciPy Python package, which uses a Taylor ap-
proximation combined with a squaring-and-scaling method.
See [13] for details.

For a first experiment, we take the Standford bunny [18], a
graph built from a rabbit ceramic scanning (2503 nodes and
65.490 edges, with λmax ' 78). For the signal, we choose
a Dirac located at a random node. We compute repeatedly
the diffusion from 2 to 20 scales τ sampled in [10−3, 101].
Our method is set with a target error ηK ≤ 10−5. When the
τ values are linearly spaced, both methods can make use of
their respective multiscale acceleration. In this context, our
method is about twice faster than Scipy’s; indeed, it takes

0.36 s plus 6.1×10−3 s per scale, while Scipy’s takes 0.74 s
plus 2.4×10−3 s per scale.

On the other hand, when the τ values are uniformly sam-
pled at random, SciPy cannot make use of its multiscale
acceleration. Indeed, its computation cost increases linearly
with the number of τ ’s, with an average cost of 0.39 s per
scale. Whereas, the additional cost for repeating our method
for each new τ is negligible (0.0094 s on average) compared
to the necessary time to initialize once and for all, the T̃k(L′)x
(0.30 s).

The trend observed here holds for larger graphs as well. We
run a similar experiment on the ogbn-arxiv graph from
the OGB datasets [19]. We take uniformly sampled scales in
[7.6×10−2, 2.4×10−1] (following recommendations of [20]),
and set our method for ηK ≤ 10−3. We observe an average
computation time of 504 s per scale (i.e. 1 hr and 24 min
for 10 scales) for Scipy’s method, and 87 s plus 50 s per
scale for our method (i.e. around 9 min for 10 scales). If
we impose a value ηK ≤ 2−24, comparable to the floating
point precision achieved by Scipy, the necessary polynomial
order K only increases by 6%, which does not jeopardise
the computational gain of our method. This behavior gives
insight into the advantage of using our fast approximation for
addressing the multiscale diffusion on very large graphs.

All experiments are in Python using NumPy and SciPy.
They ran on a Intel-Core i5-5300U CPU with 2.30GHz pro-
cessor and 15.5 GiB RAM on a Linux Mint 20 Cinnamon.

V. CONCLUSION

Our contribution is twofold: first, using the now classical
Chebyshev approximation of the exponential function, we
significantly improved the state of the art theoretical bound
used to determine the minimum polynomial order needed for
an expected approximation error. Second, in the specific case
of the heat diffusion kernel applied to a graph structure, we
capitalized on the polynomial properties of the Chebyshev
coefficients to factorize the calculus of the diffusion operator,
reducing thus drastically its computational cost when applied
for several values of the diffusion time.

The first contribution is particularly important when dealing
with the exponential of extremely large matrices, not neces-
sarily coding for a particular graph. As our new theoretical
bound guarantees the same approximation precision for a
polynomial order downsized by up to one order of magnitude,
the computational gain is considerable when modeling the
action of operators on large mesh grids, as it can be the case,
for instance, in finite element calculus.

Our second input is directly related to our initial motivation
in [5] that was to identify the best diffusion time τ in an
optimal transport context. Thanks to our accelerated algorithm,
we can afford to repeatedly compute the so-called Diffused
Wasserstein distance to find the optimal domain adaptation
between graphs’ measures.

ACKNOWLEDGMENT

The authors wish to thank Nicolas Brisebarre for discussions
that helped sharpening some bounds, as well as Hakim Hadj-
Djilani for discussions on python implementations.

5

REFERENCES

[1] R. M. Mattheij, S. W. Rienstra, and J. T. T. Boonkkamp, Partial
differential equations: modeling, analysis, computation. SIAM, 2005.

[2] O. De la Cruz Cabrera, M. Matar, and L. Reichel, “Analysis of directed
networks via the matrix exponential,” Journal of Computational and
Applied Mathematics, vol. 355, pp. 182–192, 2019.

[3] H. Zhuang, S.-H. Weng, and C.-K. Cheng, “Power grid simulation using
matrix exponential method with rational krylov subspaces,” in 2013
IEEE 10th International Conference on ASIC. IEEE, 2013, pp. 1–4.

[4] M. Pusa and J. Leppänen, “Computing the matrix exponential in burnup
calculations,” Nuclear science and engineering, vol. 164, no. 2, pp. 140–
150, 2010.

[5] A. Barbe, M. Sebban, P. Gonçalves, P. Borgnat, and R. Gribonval,
“Graph diffusion wasserstein distances,” in European Conference on
Machine Learning and Principles and Practice of Knowledge Discovery
in Databases, 2020.

[6] F. R. Chung and F. C. Graham, Spectral graph theory. American
Mathematical Soc., 1997, no. 92.

[7] M. Mehra, A. Shukla, and G. Leugering, “An adaptive spectral
graph wavelet method for pdes on networks,” Adv. Comput.
Math., vol. 47, no. 1, p. 12, 2021. [Online]. Available: https:
//doi.org/10.1007/s10444-020-09824-9

[8] M. Popolizio and V. Simoncini, “Acceleration techniques for
approximating the matrix exponential operator,” SIAM J. Matrix
Anal. Appl., vol. 30, no. 2, pp. 657–683, 2008. [Online]. Available:
https://doi.org/10.1137/060672856

[9] M. A. Botchev and L. A. Knizhnerman, “ART: adaptive residual-
time restarting for krylov subspace matrix exponential evaluations,”
J. Comput. Appl. Math., vol. 364, 2020. [Online]. Available:
https://doi.org/10.1016/j.cam.2019.06.027

[10] V. Druskin and L. Knizhnerman, “Two polynomial methods of
calculating functions of symmetric matrices,” USSR Computational
Mathematics and Mathematical Physics, vol. 29, no. 6, pp. 112–
121, 1989. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/S0041555389800205

[11] L. Bergamaschi and M. Vianello, “Efficient computation of
the exponential operator for large, sparse, symmetric matrices,”
Numer. Linear Algebra Appl., vol. 7, no. 1, pp. 27–45, 2000.
[Online]. Available: https://doi.org/10.1002/(SICI)1099-1506(200001/
02)7:1\〈27::AID-NLA185\〉3.0.CO;2-4

[12] J. C. Mason and D. C. Handscomb, Chebyshev polynomials. CRC
press, 2002.

[13] A. H. Al-Mohy and N. J. Higham, “Computing the action of the matrix
exponential, with an application to exponential integrators,” SIAM J.
Scientific Computing, vol. 33, no. 2, pp. 488–511, 2011.

[14] G. Phillips, Interpolation and Approximation by Polynomials, ser.
CMS Books in Mathematics. Springer, 2003. [Online]. Available:
https://books.google.fr/books?id=87vciTxMcF8C

[15] M. Abramowitz, I. A. Stegun, and R. H. Romer, “Handbook of
mathematical functions with formulas, graphs, and mathematical tables,”
1988. [Online]. Available: http://www.math.ubc.ca/∼cbm/aands/toc.htm

[16] D. I. Shuman, P. Vandergheynst, and P. Frossard, “Chebyshev
polynomial approximation for distributed signal processing,” in
Distributed Computing in Sensor Systems, 7th IEEE International
Conference and Workshops, DCOSS 2011, Barcelona, Spain, 27-29
June, 2011, Proceedings. IEEE Computer Society, 2011, pp. 1–8.
[Online]. Available: https://doi.org/10.1109/DCOSS.2011.5982158

[17] N. J. Higham and A. H. Al-Mohy, “Computing matrix functions,”
Acta Numer., vol. 19, pp. 159–208, 2010. [Online]. Available:
https://doi.org/10.1017/S0962492910000036

[18] R. Riener and M. Harders, Virtual reality in medicine. Springer Science
& Business Media, 2012.

[19] W. Hu, M. Fey, M. Zitnik, Y. Dong, H. Ren, B. Liu, M. Catasta, and
J. Leskovec, “Open graph benchmark: Datasets for machine learning on
graphs,” 2021.

[20] C. Donnat, M. Zitnik, D. Hallac, and J. Leskovec, “Learning
structural node embeddings via diffusion wavelets,” Proceedings of
the 24th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, Jul 2018. [Online]. Available: http:
//dx.doi.org/10.1145/3219819.3220025

