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Abstract

In this paper, we propose an approach for learning bi-
nary hash codes for image retrieval. Canonical Correla-
tion Analysis (CCA) is used to design two loss functions
for training a neural network such that the correlation be-
tween the two views to CCA is maximized. The first loss,
maximizes the correlation between the hash centers and
learned hash codes. The second loss maximizes the cor-
relation between the class labels and classification scores.
A novel weighted mean and thresholding based hash center
update scheme is proposed for adapting the hash centers in
each epoch. The training loss reaches the theoretical lower
bound of the proposed loss functions, showing that the cor-
relation coefficients are maximized during training and sub-
stantiating the formation of an efficient feature space for im-
age retrieval. The measured mean average precision shows
that the proposed approach outperforms other state-of-the-
art approaches in both single-labeled and multi-labeled im-
age datasets.

1. Introduction

Due to their excellent feature extraction capabilities,
deep neural networks have become state-of-the-art in fea-
ture extraction and are the basis of most Content Based
Image Retrieval methods [42]. The evaluation of similar-
ity between two images would be performed by computing
a predefined distance measure between the feature vectors
in the feature space. Besides high retrieval quality, both
efficiency and speed are also essential requirements for a
good retrieval system. Due to the dramatic and continuous
growth of image datasets, evaluation of Euclidean distances
for subsequent ranking and nearest neighbor search has be-
come too computationally expensive or even infeasible [35].
In addition, the feature vectors are high-dimensional, which
increases the computational complexity exponentially. A
solution for this problem would be using compact binary
representations. In general, when using neural networks
as a feature extractor for image retrieval, two approaches

can be considered for obtaining binary codes. In a first ap-
proach, an Euclidean feature space can be optimized result-
ing in feature vectors having well suited properties for re-
trieval when binarized [19]. Subsequent quantization and
binarization of the Euclidean feature space is then mainly
to be concerned with minimizing the information loss as
well as preserving similarity information in the obtained bi-
nary codes. In the second approach, a deep neural network
can be trained to directly produce effective binary features
[3]. In this case, obtaining binary values also requires the
use of an activation function which maps to a binary space
in the last layers of the network. We have adopted the sec-
ond approach in this paper. To overcome the challenges of
high computational cost and lack of search speed, Approx-
imate Nearest Neighbour [39] (ANN) search is a common
alternative approach which offers more efficiency and suffi-
ciently high accuracy for many practical applications [33].
A widely used form of ANN search is hashing, where a
mapping is found to create a lower-dimensional represen-
tation of the actual data while preserving the similarity be-
tween data points in the new domain accurately. Hashing is
in general classified into data-independent approaches and
data-dependent approaches. Data independent approaches
[22, 17, 29] mainly rely upon random projections to gener-
ate the hash functions. Locality-sensitive hashing (LSH), is
[6] a popular data-independent approach, which was used
in [15] and [9] to solve the ANN problem while avoiding
the curse of dimensionality inherently associated with ex-
act nearest neighbor searches for data in their original met-
ric spaces. Recent methods mainly concentrate on, data-
dependent approaches which are mainly categorized as un-
supervised and supervised methods. We refer readers to
[34] for an extensive survey. For learning hash functions,
unsupervised approaches [21, 8, 7, 26, 14, 13] use various
metrics to supervise the learning. In contrast, the supervised
approaches utilize the semantic labels of the training data.
In recent years, deep supervised hashing has achieved good
retrieval performance [36, 3, 24, 18, 2, 25, 37, 4, 2, 24, 18].
Especially, pair-wise and triplet hashing approaches [3, 41,
36, 25, 37] have shown promising results. However, these



approaches require a lot of time to sample enough pairs or
triplets. The loss function depends on the distance calcula-
tion between similar and dissimilar pairs and does not uti-
lize the entire feature statistics during training.

1.1. Related work

Quite recently, Canonical Correlation Analysis (CCA)
was used such that the correlation between the feature vec-
tors and label vectors was maximized [9]. The learned fea-
ture space was then binarized using the popular ITQ [4] ap-
proach. Here, statistical properties of the feature space is
taken into consideration during the training.

Yuan et al. proposed a new global similarity metric
which they called central similarity in [21]. By applying this
new metric, hash values of similar data points are encour-
aged to approach a common center, where as pairs of dis-
similar hash codes converge to distinct centers in the Ham-
ming space. There are two systematic approaches proposed
in [21] to generate hash centers fulfilling the above condi-
tion: One leverages the characteristics of the Hadamard ma-
trix, thus obtaining hash centers with maximal mutual Ham-
ming distance, and the other uses random sampling from a
Bernoulli distribution when the bit length is not a power of
2. Generating hash centers from the rows of the Hadamard
matrix has several appealing properties: Firstly, it is a bi-
nary matrix with elements of value {+1, —1} which makes
the generation of the hash centers in the Hamming space
straightforward. Furthermore, it is a square matrix of size
K x K with K = 2™ n € N being a power of 2 which leads
to hash centers with a common amount of bits in the hash
codes. In addition, its row vectors are mutually orthogonal.
Learning the hash function requires training data to be as-
sociated with the generated hash centers in order to reflect
semantic information in the Hamming space. There are as
many hash centers generated as there are semantic labels in
the dataset. However, since each sample can contain one
or more categories for multi-labeled data, a majority voting
is proposed in order to account for the transitive similarity
of data points sharing multiple labels. For training, a cen-
tral similarity loss is defined which utilizes the binary cross
entropy loss to measure the similarity between hash code
outputs of the network and its corresponding semantic hash
centers. To avoid optimization difficulties implied by the
binary valued hash centers, a quantization loss was intro-
duced based on a bi-modal Laplacian prior, as in [22], with
additional smoothing. However, a major problem in this ap-
proach is that the hash centers are not updated even though
the feature space changes during training.

Another interesting work in a similar direction was pro-
posed by Hong et al. in [6]. Here, Linear Discriminant
Analysis characteristics are trained directly on the hash
codes, thus enforcing the deep network to produce hashes
which have a small intra-class variance while also having a

high inter-class variance. The proposed method updates the
hash centers during deep hashing training. Here, the natu-
ral problem arises that hash centers are desired to be binary,
such that the CNN features are encouraged to be discrete
and are desired to be real valued at the same time, such that
gradient descent optimization is feasible [6]]. Therefore, a
distinct treatment of those hash centers is designed depend-
ing on whether performing a forward pass or backward pass
step during training is implemented.

2. This paper

Inspired by the idea of updating hash centers during
training [[6], an alternative method of hash center update
based on the weighted mean of the hash values is proposed
in our paper, which aims to reflect the movement of the
formed clusters in the Hamming space during training. The
network was trained using a CCA-based loss formulation
such that the correlation between the hash codes and hash
centers is maximized along with the correlation of classifi-
cation scores and class labels. The major contributions of
this paper are summarized below:

¢ First, initial hash centers, around which the hash codes
are clustered, are selected as proposed in [21]]. A novel
weighted mean and thresholding based hash center up-
date scheme is proposed for both single-labeled and
multi-labeled images.

* The loss function is formulated using CCA such that
the generated hash codes and hash centers have max-
imum correlation. This loss function is combined
with the CCA-based classification loss as proposed in
[9] which maximizes the correlation of classification
scores with the class labels.

¢ The theoretical lower bound is determined for both
loss functions based on the rank of the two views of
CCA, and an optimum regularization factor is chosen
to combine the two loss functions.

Experiments were conducted on single-labeled dataset
CIFAR-10 [10], as well as multi-labeled datasets MS-
COCO [14] and NUS-WIDE [3] and the retrieval per-
formance of the hash codes is evaluated for different bit
lengths. The training and test curves, precision-recall
curves, and t-SNE [18|] plots of the generated feature
space were plotted and discussed. Mean average preci-
sion was computed and the performance is compared with
other supervised hashing approaches such as DPSH [13],
DCCH [9], CSQ [21], DSDH [12]], DDSH [8], DTSH [19],
LDH [6], HashNet [2], DHN [22], DNNH [11], and
CNNH [20].

The paper is organized as follows: Section [3] explains
the network architecture, and loss function. The hash center



update is discussed in Section ] Experimental results are
discussed in Section[5]and concluding remarks are drawn in
Section

3. Proposed approach

An efficient feature space for image retrieval reflects the
semantic information contained in its represented images.
Deep hashing is used in the proposed Deep Central Simi-
larity Hashing (DCSH) method, which directly learns com-
pact binary hash codes having high correlation with the hash
centers representing the image categories. The hash cen-
ters are updated during training such that they adapt to the
changes in the feature space.

3.1. Network architecture

The network architecture of the proposed approach is
given in Fig. The Residual network [5] is used as the
basic feature extractor which was pretrained on the Ima-
geNet [16] dataset. Followed by the residual layers, a hash-
ing layer consisting of a fully connected layer and subse-
quent sigmoid activation function is used to generate hashes
corresponding to the given input images. The output dimen-
sion of this layer is therefore equal to the required number of
bits. An intermediate layer is used subsequently to the hash-
ing layer to generate high output dimensionality from the
input hash codes. This intermediate layer is required, since
the loss function used in this architecture, Lpccr (see Sec-
tion , is a dimensionality reduction method. A higher
number of input dimensions exceeding the number of dis-
tinct classes in the dataset is required as input to this layer.
There are two losses in the proposed approach: 1) Lyash
correlating the hashing outputs with the semantic hash cen-
ters. 2) Le¢lass correlating the classification scores with the
label information of the dataset. The final training loss,
Lpcsy then takes both losses into account for the optimiza-
tion.

3.2. Hash code generation

In proposed DCSH, hashing values are generated by the
output of the hashing layer. It contains a sigmoid activation
function which produces hashes 7, € [0, 1]7 with B ele-
ments, and B being the number of required bits for each of
the NV images in the dataset. After successful training of the
network, the values of the hashing outputs are likely to be
either close to 0 or 1. An additional thresholding 7(-) at 0.5
is performed on each element to obtain the desired binary
code vectors.

3.3. Loss formulation

The proposed approach uses Canonical Correlation
Analysis (CCA) at two output layers of the network to for-
mulate the training loss as shown in Fig. [T, CCA aims to

find transformations of two input views which maximally
correlates their mapped representations. DCCH [9]] uses
CCA such that a neural network can be trained to generate
non-linear mappings of its input which maximally correlate
to a given target. In this paper, this loss formulation is used
to optimize the outputs of a neural network from two layers
simultaneously. The layers from which the loss is calculated
is shown in Fig. [I| For two data views X and Y, CCA op-
timizes projections @ and b which maximize the correlation
p between the projected inputs as:

p(@*,b*) = max corr(a’ X, b'Y)
a,b
T T
_ ma} a Exyb (1)
ab \/&szxc_i ETEYYg

S.t. 6T2an = I_;TEYYg: 1,

where, Yxx,2xy, and Xyvy denotes the covariances,
cov(X, X), cov(X,Y), and cov(Y,Y) respectively. This
optimization problem can be solved by using a Singular
Value Decomposition, shown by Mardia et al. in [15].
DCCEF followed this approach to formulate the loss func-

tion as:
k k
LDCCF:_ZUz‘:_ZPi (@)
i=1 i=1
with k largest singular values o; of the matrix K defined by
K:= 2 Sxy 3oy . 3)

The equivalence between the correlation coefficients and
the singular values is also proven in [15)]. Accordingly,
the training loss minimizes the negative sum of correla-
tion coefficients. Since the maximum positive correlation
can reach a value of 1, the lower bound of the DCCF loss
Lpccr will be —k. Furthermore, & can only be as high as
the rank of matrix K. For input vectors X and target data
view Y, the upper bound of k is determined by:

kmax = rank(K) = min(rank(X), rank(Y)) — 1. (4)

The subtraction of 1 from either rank(X) or rank(Y) is due
to the inherent subtraction of the mean for the covariance
matrices in K. The loss function of DCSH consists of two
CCA evaluations. Both components, the hashing loss and
the classification loss, are discussed next.

Hashing loss: First, the DCCF loss is evaluated by us-
ing the outputs of the hashing layer X}, with their corre-
sponding semantic hash centers Yy,. These hash centers act
as targets in Hamming space towards which the respective
output hashes of the network should converge. The size of
the two data views X, € [0,1]"*5 and Y, € {0, 1}M*B
is determined by the batch size M and the number of bits



Hash centers

Low-level features — High-level features

Images

L

Backbone network
ResNet-50

layers 512 x bits

Group indicator
. Y.
matrix

[p—y

Classification
score

Hashes |—

[

Hashing layer
FC + Sigmoid act.

—~

Classification layer
FC + Sigmoid act.
4096 x classes

Intermediate layer
FC + RelLU act.
bits x 4096

Figure 1: Overview of the proposed Deep Central Similarity Hashing network architecture. ResNet layers according to [S]] are
used as the backbone network for basic feature extraction. Both hashing and classification layer, consist of a fully connected
(FC) layer with subsequent sigmoid activation. The intermediate layer comprises a fully connected layer with subsequent
ReLU activation. Bits indicate the bit length of the hash code. Classes indicates the number of categories in the dataset.

B in the binary codes. Therefore, the hashing loss can be
formulated as:

Liash = Lpcor (Xn, Yh) - )

Since each hash center used in the target view Y}, represents
one of the C' categories in the underlying dataset, it consists
of only at most C' distinct rows. Assuming that M > C,
rank(Yy) = min(B, C). Therefore, the maximal number
of correlation coefficients according to Eq. @) is:

kmax = min(min(B, M), min(B, C)) — 1

. (6)
=min(B,C)—1,for M > Band M > C.

According to Eq. (), this effectively means that during
training the negative sum of min(B, C') — 1 correlation co-
efficients is minimized. As the correlation maximally can
reach a value of 1, the lower bound of the hashing loss goes
to —(min(B,C) — 1).

Classification loss: The second component of the pro-
posed DCSH loss function is a classification loss, which
performs a CCA of the classification scores X, from the
output of the final network layer and a target group indi-
cator matrix Y, (see Fig. [I). In this context the first data
view X, € RM*L i5 defined as a matrix consisting of M
rows each denoting an L-dimensional feature representa-
tion 7 € R® of a sample of the current batch with M
images. As a second data view, a so called group indica-
tor matrix Y. € {0,1}M*¢ is used with M rows of label
vectors § = [y1, ..., yc| with C entries (with a value 1 in-
dicating the class associated to the respective image and a
value 0 otherwise). This definition can directly be extended
for multi-class labels, such that each row of the group in-
dicator matrix Y. indicates the associated classes in the

corresponding data sample [9]. Note that the classification
layer uses a sigmoid activation instead of the usual softmax.
This is because the approach aims to be directly extensi-
ble to multi-label datasets using the same CCA evaluation.
As group indicator matrices are used as the second view,
sigmoid activation is an appropriate choice encouraging the
network to produce outputs close to 1 for classes contained
in the image and 0 otherwise. Here, the size of the two used
data views X. € [0,1]M*% and Y, € {0,1}M* is de-
termined by the batch size M and the number of distinct
classes C in the underlying dataset. Given these data views,
the classification loss is formulated as:

Lclass = LDCCF (XC) YC) . (7)

Assuming a higher batch size than distinct classes M > C,
the maximal number of correlation coefficients according to
Eq. @) results:

Emax = min(M,C) — 1 ®
=C-1,for M >C.
The lower bound of the classification loss then comes to a
value of —(C' — 1).

Loss combination and normalization: The final train-
ing objective of the proposed deep hashing method is de-
signed by a linear combination of the two losses introduced
above as:

Lpcosu = Lhash + @Lclags - 9

The regularization factor o balances the contribution of
both components for the final optimization objective. By
using the theoretical lower bounds of hashing and classi-
fication loss as shown in Eq. (6) and Eq. (8), an equal



weighting of their contributions can be computed as:

min(B,C) —1
= 10
! C_1 (10)
Setting « to this value results in the theoretical lower
bounds of the hashing and classification loss both becom-
ing equal. However, it has been beneficial in subsequent
experiments to choose « in each case of B and C' as:
B-1
= 11

‘T (b
Therefore, in case of datasets for which C' < B, the classifi-
cation loss is emphasized. This occurs for all single-labeled
datasets. Experiments on multi-labeled datasets all satisfy
C > B and thus, o normalizes the contribution of classifi-
cation and hashing loss in the final training objective. The
theoretical lower bound of the combined DCSH loss can
then be determined as follows:

min Lpcsg = Min Lyash + @ min Lejass

—(min(B,C)—-1)—(B-1). (12)

4. Hash center update during training

An important part of the training procedure in DCSH is
to provide good semantic hash centers, which are updated in
each epoch. According to [21], either the Hadamard matrix,
in case of required bit length of power of 2, or a Bernoulli
distribution Bern(0.5), for other bit lengths is used to gen-
erate the initial hash centers. Both approaches provide hash
centers reflecting distinct classes which are sufficiently far
apart with respect to the Hamming distance. Each hash cen-

ter HEO), ¢ € {1,...,C} represents one of the C classes in
the dataset. The index O represents the initial state of the

hash centers. These hash centers fz&o), are elements of Yy,,
which is one view of CCA loss Ly,sn. Opposed to [21]]
which keeps hash centers constant during training, our ap-
proach additionally performs an update after each training
epoch with the goal to better reflect semantic information
in Hamming space. Thus, the updated versions are able to
better represent the class centers in Hamming space more
dynamically. Using this in the context of the DCCF loss re-
sults in the target semantic hash centers being able to adapt
to the semantic information contained in the actual network
outputs. Since a sigmoid activation is used in the hashing
layer, the resulting hash values 27, will be in the range be-
tween [0, 1]. These z, are elements of X}, which is the
second view of CCA loss Ly,sh. The following proposed
methods for updating hash centers require them to be in the
range of [—1,1]. Therefore, we apply a simple mapping,
f(£n) = 225, — 1. However, for valid further training the
updated hash centers have to be again binary values {0, 1}.
Therefore, a final remapping to the required binary space is
performed.

Single-labeled images: After each training epoch, the
hash values of each training image are evaluated by a for-
ward pass. By using the information of the class labels,
the hashing outputs 7}, can be grouped in sets Qéz), each of
which contains the hash values of images associated with
class c at epoch i. Now, for each group of hash codes,
the mean vector of all hashing values representing the same
class is calculated as:

:(i-’rl) 1 .
c — > . (13)
|gc ‘ 73,0 )eg( )
A subsequent thresholding of the obtained mean vector
~(i+1)
h. results in the updated binary hash center h(Z+1 with

the thresholding function defined as

1,ifx, >0

() =<" -
(@) {O,ifmk<0

Multi-labeled images: In this case, hash values can be
associated with multiple classes at the same time. There-
fore, an extension of the hash center update given in eq. (13)
is introduced. The hash values are weighted with each up-
date. Hashes are weighted lighter when containing more
categories in their labels. This is based on the assumption
that with increasing category associations, hash values are
less able to represent a single category in Hamming space.
Therefore, a weighting factor w, = ﬁ for each of the N
hash values is introduced based on the number of classes
|ln] in its corresponding label ,,. First, the hashes of the
training images are evaluated by a forward pass after weight
update of the network in the current epoch. Then, the ob-
tained hash values are grouped in sets g((f), each consisting
of those hashes which at least contain the respective class
c in their corresponding label. Note, that for multi-labeled
data the resulting hash value groups gﬁ“ are not distinct sets
as in the previous case of single-labeled data. This is be-
cause hash values labeled with multiple categories c at the
same time are also contained in each corresponding group
gc Now, the weights w,, are used to compute a welghted

mean of the hash values contained in each group gc
epoch i:

, for each element x;, of ¥. (14)

c

Wy x';b(i) . (15)

By applying a weighted mean, the contribution of each hash
value is adapted according to its reflecting semantic infor-
mation about the class of a group. The steps to perform a
hash center update during DCSH training are summarized
in Algorithm4.1]



Algorithm 4.1 DCSH hash center update

Require: Hash centers H(") = {E&”}, ¢ =1,..,C with

C classes, and output hashes {27,(} € [0;1]™ with
n =1,..., N from N training images at epoch <.

1: For each class ¢, group all hash outputs associated with
c in their label I;:
(]éz) = {x’}l(l) ccinly}, fore=1,...,C.

2: Calculate weights for each output hash based on num-
ber of classes in its label |I,|:

_ 1

Wy = m

3: Calculate weighted mean of grouped hashing values:
~(i+1) .
h, =—2 S w,a, fore=1,..,C.

2 (i) e (D)
Th Egc
4: Create updated binary hash centers by thresholding:

o "_:(Z+1)
R = sign(h, ).

s: return Updated hash centers H**1) for epoch i + 1.

5. Experimental results

In this paper, the single-labeled dataset CIFAR-10 [10],
and multi-labeled datasets MS-COCO [14] and NUS-
WIDE [3] were used for evaluating the final retrieval per-
formance. For each dataset, the training and test curves
and precision-recall (P-R) curves were plotted. Further-
more, the retrieval performance was measured by calculat-
ing mean average precision (MAP) [8]. The neural network
architecture used is ResNet-50 [5]. We used a batchsize
of 200 in our experiments, with an initial learning rate and
learning rate decay of 0.0003 and 0.7 every 10** epoch for
CIFAR-10 and 0.0008 and 0.1 for multi-labeled datasets
which was determined by grid search. The optimizer used is
Stochastic gradient descent. The regularizer o was chosen
as shown in Eq. (T2).

CIFAR-10 [10] is a labeled subset of tiny images [17]
with 10 classes. Each class is equally represented by 6000
images making a total of 60,000 images. In order to better
reflect the requirements of an image retrieval application,
the following setup is used in accordance to the experimen-
tal setup in DDSH [8]]. From the total 60, 000 images, 1000
images are used as query images by sampling 100 random
images from each of the ten classes of the dataset. The re-
maining 59,000 images constitute the gallery set against
which retrievals are performed. Furthermore, 5000 train-
ing images are randomly sampled from the gallery set such
that each class is again equally represented with 500 im-
ages. Thus, the training set is a labeled subset of the gallery
set. The experiments were run for 25 epochs. The train-
ing and test loss during optimization for binary codes of 32
bits is depicted in Fig. E] (a). (The loss curves and P-R
curves for other bits are given in the supplementary mate-
rial.) The theoretical lower bound of —40 as mentioned in

Table 1: MAP@5000 for CIFAR-10.

Method 12 bits 24 bits 32 bits 48 bits
DCSH (Ours) 0.863 0.898 0.902 0.911
DCCH [9] 0.794 0.830 0.841 0.851
DDSH [8]] 0.769  0.829 0.815 0.819
DSDH [12] 0.740 0.786 0.801  0.820
LDH [6] - - 0.784  0.792
DTSH [19] 0.710  0.750 0.765 0.774
DPSH [13] 0.713 0727  0.744  0.757

Eq. (I2) is reached during training. The distribution of the
resulting binary hashes in Hamming space is visualized in
Fig. [2] (a) by using t-SNE for the gallery images. Binary
features associated with the same class are located close to
each other while having good separability to binary features
of other categories. Furthermore, semantically related cat-
egories like automobile’, ’airplane’ or ’truck’ are located
next to each other in Hamming space, while categories like
’dog’ or ’cat’ are located on the other side. The MAP @ 5000
was measured and the results are outlined in Table [ It
can be seen that the proposed DCSH method clearly out-
performs existing state-of-the-art approaches. Furthermore,
P-R curves for 32 bits was plotted in Fig. 3] (d). P-R curves
were generated by retrieving all relevant images in gallery
whereas MAP values in Table [1l denotes MAP@5000 in
which 5000 returned images was considered. Here, the
precision is high for a large range of recall values. The
precision only starts to decrease for high values of recall.
Therefore, the majority of relevant images with respect to a
given query image are likely to be returned within the top
retrievals.

MS-COCO [14] is a multi-labeled dataset where each
image is associated with several of 80 distinct object cat-
egories. The used data split for image retrieval evaluation
is based on the setup described in HashNet [2]. Combining
training and validation images and subsequent discard of all
images without category information results in a total num-
ber of 122,218 images. 5,000 query images are randomly
sampled from these obtained images, leaving the remain-
ing 117,218 images as the gallery set. In addition, 10, 000
images are randomly sampled from the gallery set for train-
ing. The model was trained for 25 epochs. The training
and test loss, values during training for 32 bits is given in
Fig. 3] (b). Theoretically, the lower bound of the loss func-
tion is —2(B — 1) with B number of bits, as discussed in
Eq. . However, it can be seen that this lower bound is
not reached. This is because a multi-labeled dataset can-
not be fully class-wise clustered as each image may belong
to several categories. Therefore, the correlation coefficients
of the underlying loss are not able to reach the maximum.
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Figure 2: T-SNE of 64 dimensional features for a) gallery images of CIFAR-10, b) MS-COCO highlighting bird category,

and ¢) NUS-WIDE highlighting dog category.
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Figure 3: First row indicates the training and test loss for all the three datasets for 32 bits. The training loss reaches the lower
bound of —40 for CIFAR-10. For multi-labeled, the lower bound of —62 could not be reached as the correlation coefficients
will never reach the maximum value. Second row indicates the P-R curves for all the three datasets for 32 bits.

The training reaches a lower bound indicating formation of
an optimum feature space. Since MS-COCO is a multi-
labeled dataset, it is not feasible to depict all class asso-
ciations for the data points at once by using different colors
for each categories. Instead, single categories have been
selected to be highlighted against the remaining categories
of the dataset. Clusters of binary hashes are formed in the
feature space. There are cases where these clusters repre-
sent a unique category, as clearly shown in the example of
"bird” depicted in Fig. [2| (b). The retrieval performance of
DCSH for MS-COCO in terms of MAP is given in Table
Results are compared to state-of-the-art approaches. It can
be seen that CSQ is having same MAP for 64 bits and in
all other cases, the proposed method outperforms other re-
trieval frameworks. CSQ did not provide the MAP for the
case of 48 bits in [21]]. The P-R curves for 32 bits are shown

Table 2: MAP@5000 for MS-COCO.

Method 16 bits 32 bits 48 bits 64 bits
DCSH (Ours) 0.805 0.847 0.859 0.861
CSQ 0.796  0.838 - 0.861
DCCH [9] 0.659 0.729 0.731  0.739
HashNet [2] 0.687 0.718 0.730  0.736
DHN [22]] 0.677 0.701  0.695  0.694
DNNH 0.593 0.603 0.604 0.610
CNNH [20] 0.564 0574 0571  0.567

in Fig. 3] (e). The top 3 retrieval results for a query image
with labels “surfboard” and "person’ are shown in Fig. ]
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Figure 4: Query image and top 3 retrievals on MS-COCO, all contain category labels "surfboard’ and "person’.
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Figure 5: Query image and top 3 retrievals on NUS-WIDE, all contain category label *person’.

NUS-WIDE was introduced by Chua et al. in [3]] con-
taining 269, 648 web images in total which are associated
with 5,018 unique tags from Flickr. It is a multi-labeled
dataset in which each image is associated with one or more
of 81 concepts. The experimental setup for NUS-WIDE in
DDSH [8]] is used here. Only the images belonging to the
10 most frequent concepts are used. This results in a total
number of 186,577 images, from which 1,867 query im-
ages are randomly sampled [8]. The remaining 184,710
images constitute the gallery set, and 5, 000 images are ran-
domly sampled from it for training [8]. The network was
trained for 75 epochs. Fig. 3] (c) shows the training and test
loss during training for 32 bits. The theoretical lower-bound
in this case is —2(B — 1) as well, and cannot be reached
as explained in the case of MS-COCO. In Fig. [2] (c), or-
ange color indicates the dog’ category. It can be seen that
there is clearly a dominant area in the feature space. There-
fore, a nearest neighbor search would result in retrieved im-
ages very likely being associated with the similar semantics.
MAP has been measured for the proposed approach and the
numbers were compared to state-of-the-art approaches. The
results are outlined in Table [3] DCSH is mainly compared
to CSQ [21]] and DCCH [9]. The proposed DCSH method
outperforms other approaches. Note that CSQ did not list
the MAP for 12 and 24 bits in [21]. The MAP for 16 bits
is given in [21]] and is 0.810, for which DCSH gave a value
of 0.828. For further evaluation, the precision-recall curves
were plotted. For DCSH for 32 bits P-R curve is given in
Fig. B (f). The precision drops as recall increases as many
wrong retrievals occur till we retrieve all relevant images.
An example query image and the top 3 retrieval results for
category "person’ are shown in Fig. 3]

Table 3: MAP@5000 for NUS-WIDE.

Method 12 bits 24 bits 32 bits 48 bits
DCSH (Ours) 0.823 0.833 0.841  0.857
DPSH 0.794 0.822 0.838  0.851
DCCH [9] 0782 0.814 0.825 0.834
CSQ - - 0.825  0.832
DSDH 0.776 ~ 0.808 0.820  0.829
DDSH 0.791 0815 0.821  0.827
DTSH [19] 0.773  0.808 0.812 0.814
LDH [6] 0.769 0.789  0.787  0.803

6. Conclusions

In this paper, we have proposed an approach for learning
efficient hash codes for image retrieval. The neural network
is trained using a loss function in such a way that the cor-
relation between the hash codes and hash centers is max-
imized. Canonical Correlation Analysis (CCA) is utilized
in the loss formulation, and hash codes and hash centers
are chosen as the two views of CCA. The network is also
trained using the classification loss as well, which maxi-
mizes the correlation between category labels and classifi-
cation scores. The hash centers are then dynamically up-
dated so that the hash centers adapt to the changes in fea-
ture space. The experimental results on both single-labeled
and multi-labeled datasets substantiates the generation of
an optimized feature space with minimum intra-class scat-
ter and maximum inter-class scatter. This is in fact possible
due to the inherent equivalence between Linear Discrimi-



nant Analysis [7] and CCA as proven in [[1]. As a future re-
search direction, more effective representations of individ-
ual categories could be explored for multi-labeled datasets,
which in turn could lead to better retrieval results.
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