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ABSTRACT
In this paper, we focus on learning sparse graphs with a core-
periphery structure. We propose a generative model for data as-
sociated with core-periphery structured networks to model the de-
pendence of node attributes on core scores of the nodes of a graph
through a latent graph structure. Using the proposed model, we
jointly infer a sparse graph and nodal core scores that induce dense
(sparse) connections in core (respectively, peripheral) parts of the
network. Numerical experiments on a variety of real-world data
indicate that the proposed method learns a core-periphery structured
graph from node attributes alone, while simultaneously learning core
score assignments that agree well with existing works that estimate
core scores using graph as input and ignoring commonly available
node attributes.

Index Terms— Core-periphery networks, graphical lasso, graph
learning, structured graphs, topology inference.

1. INTRODUCTION

Mesoscale properties of graphs are often used to capture the struc-
ture of complex networks. A prevalent mesoscale feature in real-
world networks is the core-periphery structure [1]. Core-periphery
property is ubiquitous in social networks [2], trade and transport net-
works [3], citation networks, and communication networks [4]. They
are useful in analyzing biological networks like brain networks [5,6],
genome-scale metabolic networks of organisms [7], and network of
protein–protein interactions [8], to name a few. For instance, in brain
networks, the core-periphery structure explains cognitive learning
processes [5] and in social networks [2] (contact networks [9]), the
most influential spreaders of information (respectively, disease) are
observed to be in the core part of the network. Therefore, identi-
fying the core and peripheral vertices helps in analyzing the central
processes in complex networks.

A core-periphery structure in graphs refers to the presence of
densely connected groups of core vertices and sparsely connected
periphery vertices. Core vertices are those vertices that have cohe-
sive connections among them. Peripheral vertices, on the other hand,
are not well connected to each other but are relatively well connected
to core vertices. An example graph with a core-periphery structure
is shown in Fig. 1(a). The dark nodes in the figure with sparse con-
nections are peripheral nodes, while the lighter ones with dense con-
nections are core nodes. Fig. 1(b) shows the adjacency matrix corre-
sponding to the graph with vertices ordered in the descending order
of coreness, where the lower-right block of the matrix corresponds
to periphery-periphery connections and can be observed to be very
sparse compared to the upper-left block corresponding to core-core
connections.

Existing algorithms estimate core scores of the nodes of a graph
given the network topology [1,11–15], but ignore node attributes that
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Fig. 1: (a) A network with core-periphery structure and (b) its adja-
cency matrix ordered according to decreasing vertex core score.

Fig. 2: Adjacency matrices estimated from (a) the proposed method
and (b) graphical lasso on a webpage network dataset [10].

might also have information about the coreness of nodes. In many
applications, we have access only to attributes of entities, and the un-
derlying graph structure may not always be available. For example,
in brain network analysis, we may have functional magnetic reso-
nance imaging (fMRI) data of different subjects without informa-
tion about the underlying structural connectivity. Therefore, in this
work, we develop an approach that learns a core-periphery structured
graph from node attributes alone so that the coreness of nodes are re-
vealed implicitly. Conventional approaches to network topology in-
ference [16–18] are based on graphical lasso, which assumes a Gaus-
sian Markov random field model for data and estimates a conditional
independence graph determined by the estimated sparse inverse co-
variance matrix [19]. However, the sparsity pattern recovered from
graphical lasso does not readily incorporate a core-periphery struc-
ture in networks. To incorporate such a core-periphery structure, it
is important to model the generative process of the edges in a graph
through core scores of the vertices of the graph. See an illustration
of networks estimated using the proposed method (described later
on) and graphical lasso in Fig. 2(a) and Fig. 2(b), respectively. It can
be observed that graphical lasso does not capture the core-periphery
structure.

In this work, we propose a generative data model to relate the
node attributes to the graph as well as to the nodal core scores. The
proposed probabilistic generative model for node attributes models
the dependence of the node attributes on the core scores through a
latent graph structure. In particular, we model core scores as vari-
ables that influence the sparsity of the graph. Though often ignored
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in graph analysis tasks, spatial distances between nodes play a vital
role in differentiating the core nodes from the peripheral ones [14].
For example, countries far apart in a world trade network are less
likely to be connected. To this end, we also incorporate spatial in-
formation into our model. Using the proposed position-aware prob-
abilistic model, which promotes a core-periphery network structure,
we jointly estimate a sparse graph and core scores of every node in
the graph. Specifically, the proposed estimator jointly learns a sparse
graph structure and node core score assignments that induce dense
(sparse) connections in core (respectively, peripheral) parts of the
network while accounting for the spatial distances between the nodes
whenever available. We evaluate the proposed method through a
number of numerical experiments on real-world data from various
domains like brain, social, and transportation networks. We verify
the correctness of the core scores learnt using the proposed method
by comparing them with existing core score estimation algorithms,
which use only the underlying known graph. The results indicate that
the proposed method estimates core scores of the vertices from node
attributes alone and are on par with existing methods. We also apply
our method on fMRI data and report interesting observations about
the differences in interactions between the brain regions in healthy
subjects and individuals with attention deficit hyperactivity disorder
(ADHD).

2. BACKGROUND: GAUSSIAN GRAPHICAL MODEL

Consider a weighted and undirected graph G = {V, E}, where V =
{v1, · · · vN} is the vertex set with N vertices and E is the edge
set. Let us collect the vertex attributes in the feature matrix X =
[x1,x2, · · · ,xd] ∈ RN×d, where the ith row of X contains d fea-
tures of the entity associated to the ith vertex of G.

In a Gaussian graphical model, x1,x2, . . . ,xd are modeled as
independent and identical observations drawn fromN (µ,Σ), where
µ ∈ RN and Σ ∈ RN×N is a positive definite matrix. The sparsity
structure of the precision matrix Θ = Σ−1 encodes all the con-
ditional dependencies between the N variables associated with the
vertices of G. Specifically, any (i, j)th entry of Θ being zero im-
plies conditional independence of variables associated with vertices
i and j, given the rest, and that there is no edge between the two
vertices. Graphical lasso learns the sparsity pattern in Θ by solving
an `1-regularized Gaussian maximum log-likelihood problem [19]:

maximize
Θ�0

log detΘ− tr(SΘ)− λ‖Θ‖1, (1)

where S is the empirical covariance matrix and λ > 0 is a regular-
ization parameter that controls the sparsity in Θ. Although graph-
ical lasso recovers sparse graphical models, it does not readily in-
corporate any specific sparsity structure such as the core-periphery
structure of interest as the `1-penalty is uniformly applied on all the
edges.

3. MODEL DESCRIPTION

In this section, we propose a prior that induces a sparsity pattern in
graphs determined by the core scores of its vertices and the spatial
distances between the vertices. Then using this probabilistic model,
we propose an estimator for learning sparse Gaussian graphical mod-
els with a core-periphery structure.

Let c = [c1, c2, . . . , cN ]
T ∈ RN denote a vector containing the

core scores with ci ∈ [0, 1] denoting the core strength of vertex i.
In other words, the likelihood of vertex i belonging to the core part
of the network increases with the value of ci. Also, let dij denote
the spatial distance between vertices i and j. We now propose a

probabilistic generative model that relates the node attributes in X
to its core scores through Θ.

We model the node attributes based on a Gaussian graphical
model. That is, the conditional probability distribution of X given
the precision matrix Θ, is given by (up to constants)

p(X|Θ) = detΘ exp(− tr(SΘ)). (2)

In networks with a core-periphery structure, we have sparser
connections between vertices in the periphery, relatively denser con-
nections between the vertices in the core and periphery, and very
dense connections between vertices in the core [cf. Fig. 1]. Fur-
ther, vertices that are spatially well separated have sparser connec-
tions between them. To promote a sparsity pattern determined by
the core-periphery structure in the graph, we therefore model the
edges of the graph such that the value of Θij is very small when
ci + cj − e log(dij) is small, i.e., if vertices i and j both belong
to the periphery or if they are spatially far apart. Here, parameter e
controls the dependence of dij on Θij . The parameter e is set to 0 if
the spatial information is not available or accounted for. To satisfy
our above requirements, we model the generative process for each
entry of Θij using a Laplace distribution p(Θij ; ci, cj) with inverse
diversity parameterized by the latent variables ci and cj as

wij = 1− ci − cj + e log(dij). (3)

Specifically, the prior distribution of Θ parameterized by c is

p(Θ; c) =

N∏
i,j=1

p(Θij ; ci, cj) = Z

N∏
i,j=1

exp (−λwij |Θij |) ,

whereZ is the normalization constant and λ > 0 controls the overall
impact of ci and cj on Θij . For p(Θij ; c) for, i, j, 1, . . . , N to be
a valid probability distribution, the inverse diversity parameter wij

should be nonnegative, i.e., 1 − ci − cj + e log(dij) > 0 for i, j,
1, . . . , N . Next, we aim to infer the model parameters Θ and c based
on the observed node attributes X.

4. THE PROPOSED LEARNING ALGORITHM

In this section, we present an algorithm to jointly learn the core score
vector c and a sparse graph represented by the zero pattern in Θ. We
estimate the model parameters Θ and c by maximizing the posterior
distribution given data, i.e., by maximizing

l(Θ, c) = log p(X|Θ) + log p(Θ; c) (4)

with respect to the parameters Θ and c. The log-likelihood func-
tion is log p(X|Θ) = log detΘ − tr(SΘ). The prior distribution
log p(Θ; c) = −λ

∑N
i,j=1 wij |Θij | is a weighted `1-penalty on Θ

with the weights determined by c. Thus the proposed optimization
problem for learning the model parameters (Θ, c) is

maximize
Θ�0,c

log detΘ− tr(SΘ)− λ
N∑

i,j=1

wij |Θij |

s. to wij = 1− ci − cj + e log(dij)

wij > 0, i, j = 1, 2, . . . , N

N∑
i=1

ci = M, ci ∈ [0, 1], i = 1, 2, . . . , N. (5)

The `1-penalty in the above optimization problem is relatively
smaller if either of the vertices belongs to the core and is the small-
est when they both belong to the core as explained by the data. As



Fig. 3: (a) Estimated and (b) ground truth networks of the Twitter dataset ordered in the descending order of the estimated core scores. (c)
Convergence of the algorithm for Celegans dataset.

the value of e is increased (while satisfying the inequality wij > 0),
the fraction of edges between spatially distant vertices decreases.
Further, to prevent the case where all the weights tend to zero, we
constrain the sum of the core scores to a real-valued positive number
M , while ci ∈ [0, 1] fixes the scale of the core scores.

The problem in (5) is a non-convex optimization problem in the
variables Θ and c. In what follows, we propose a solver based on
block coordinate ascent to solve (5). This decomposes the above
non-convex optimization problem into a set of convex subproblems.
At each iteration of the algorithm, we update Θ by fixing c and then
update c while fixing Θ.

4.1. Updating the graph

For a fixed c, the problem in (5) simplifies to the following graphical
lasso problem with a weighted `1-regularization

maximize
Θ�0

log detΘ− tr(SΘ)− λ
N∑

i,j=1

wij |Θij | (6)

with known weights that depend on c. This is a convex program that
can be solved using existing solvers, e.g., QUIC [20].

4.2. Updating the vertex core scores

For a fixed Θ, the problem in (5) simplifies to

maximize
c1,··· ,cN

N∑
i,j=1

|Θij |(ci + cj)

s. to
N∑
i=1

ci = M, ci ∈ [0, 1],

ci + cj < 1 + elog(dij), i, j = 1, · · · , N. (7)

which is a linear program that can be solved using standard off-the-
shelf solvers. We can clearly see from the objective function that
the core scores are influenced by the edge weights, which are in turn
learnt from data. The subproblem in (7) can also be used to estimate
core scores given a graph.

The proposed procedure of block coordinate ascent is initialized
with an arbitrary c (we use a scaled all-one vector in our experi-
ments) and is repeated till convergence.

5. NUMERICAL EXPERIMENTS

In this section, we evaluate the graph inference and core score
learning capabilities of our framework on real-world datasets from
biological, social, and transportation networks. We compare the core

scores estimated from existing algorithms, namely, MINRES [21],
Rombach [11], RandomWalk [13] and k-cores [4]. MINRES
learns the core scores c such that the adjacency matrix is approxi-
mated by cc

T. Rombach is an extension of the continuous formula-
tion of [1], which proposes an ideal block model for core-periphery
structured networks and estimates core scores by comparing the
given adjacency matrix with the ideal block model. RandomWalk
estimates the core scores in a network by developing the behavior of
a random walker. k-cores is a method for partitioning the nodes
in a network recursively from the periphery to the more central ones.
The input to these existing methods is the ground truth graph. In
contrast, the input to our method is just the node attributes.

5.1. Model evaluation

We first apply our method on Celegans [22], Cora [23], London un-
derground [24], Twitter [25], and WebKB [10] datasets.

Cora is a citation network dataset. In addition to the network
of citations, it also contains a binary matrix of size N × d, where
N = 2708 is the number of papers in the dataset and d = 1433 is
the size of the vocabulary. The (i, j)th entry of X indicates if the
jth word in the vocabulary is present in the ith paper. The Twitter
dataset consists of data related to 464 Twitter users, covering athletes
and organizations involved in the London 2012 summer olympics.
The node attribute matrix X ∈ R464×3097 corresponds to the lists of
the users, and the ground truth network is formed by the followers’
information, with an edge between two users if either of them fol-
low the other. The WebKB [10] dataset contains webpages collected
from computer science departments of four universities. The node
attribute matrix X ∈ R4518×d is a binary matrix indicating whether
each word in the vocabulary is present or absent in the webpage. The
vocabulary size is d = 1703 words. The spatial distance information
for Cora, Twitter, and WebKB datasets is not available.

The network in Celegans dataset is a network of neurons and
synapses in a type of worm, called C. elegans. The dataset also con-
tains the spatial coordinates of the nodes in the network. In addition
to using them as dij , we also consider the coordinates as the data ma-
trix X ∈ RN×2, where N = 131 is the number of nodes in the net-
work. London underground dataset is a network of an underground
transportation system. The spatial coordinates of tube stations form
the data matrix X ∈ RN×2, where N = 315 is the number of tube
stations. For Cora and Twitter datasets, the hyperparameter e is set to
0 and to 0.09 for Celegans and London underground datasets. We fix
M to N/8 for all the datasets. Increasing M increases the fraction
of nodes with high core scores, whereas λ can be tuned according to
the required percentage of edges in the network.

Once the core scores are learnt, we order the nodes of both the
learnt and the ground truth networks in the decreasing order of core



Proposed MINRES Rombach RandomWalk k-cores

Celegans ‖Θ0 −Θideal‖2F 41.940 41.821 39.076 40.877 39.051
‖|Θ| −Θideal‖2F 32.642 32.841 32.538 32.707 32.748

Cora ‖Θ0 −Θideal‖2F 55.488 55.434 54.690 55.326 54.909
‖|Θ| −Θideal‖2F 47.626 55.722 47.884 47.983 47.625

London underground ‖Θ0 −Θideal‖2F 79.216 79.249 78.7563 79.338 79.169
‖|Θ| −Θideal‖2F 78.818 78.905 78.811 78.858 78.856

Twitter ‖Θ0 −Θideal‖2F 134.692 137.142 124.112 131.278 129.221
‖|Θ| −Θideal‖2F 110.526 111.837 111.427 111.429 110.526

Table 1: Comparison of the proposed method with the existing core score estimation algorithms.

Fig. 4: Regions with significant differences in the core scores of
healthy individuals and subjects with ADHD.

scores. We often observe a perfect core-periphery structure in the
estimated network. Although the proposed method is agnostic of
the ground truth network, we observe that the ground truth network,
when ordered according to the core scores learnt using the node at-
tributes of the network alone, reveals the core-periphery structure.
As an example, the adjacency matrices of the learnt and the ground
truth networks of Twitter dataset are shown in Fig. 3. The adjacency
matrices computed using the proposed method and graphical lasso
on a subset of WebKB data related to Texas University are shown in
Fig. 2(a) and Fig. 2(b), respectively.

To compare the proposed method with existing works that esti-
mate core scores given a network, we apply existing core score es-
timation algorithms on the ground truth networks of the considered
datasets, whereas for the proposed method we compute core scores
from node attributes. We then order the networks according to the
core scores given by the respective algorithms. We compare the or-
dered networks Θ0 with the ideal core-periphery block model [1],
given by

Θideal =

[
1tt 0t(N−t)

0(N−t)t 0(N−t)(N−t)

]
, (8)

where 1mn and 0mn are m× n dimensional matrices with all ones
and all zeros, respectively. We compute ‖Θ0 − Θideal‖2F for dif-
ferent algorithms. In (8), t fixes the proportion of core nodes in
the considered network. We fix t to N/4 for all the experiments in
this section. Comparison of ‖Θ0 − Θideal‖2F and ‖|Θ| − Θideal‖2F
for different algorithms including the proposed method are shown in
Table 1. We observe that the values given by the proposed method
are similar to those obtained from the other methods. This indicates
that the core-periphery partitioning of the networks by the proposed
method is similar to the others, in spite of not knowing the network
directly. Furthermore, ‖Θ0 − Θideal‖2F > ‖|Θ| − Θideal‖2F for all
the datasets, indicating a more prominent core-periphery structure in
the estimated graph than the ground truth, which is also evident from

Fig. 3(a). This suggests that the graph estimated using the proposed
method by itself can be used to differentiate the core nodes from the
peripheral ones.

Finally, Fig. 3(c) shows the convergence plot for the Celegans
dataset. We observe that the value of the objective function mono-
tonically increases till convergence. The proposed algorithm con-
verges in less than 10 iterations for this dataset.

5.2. Brain network analysis

We next apply the proposed method to examine differences between
the core and the peripheral regions of healthy individuals and sub-
jects with ADHD. For this purpose, we use fMRI data from the
OHSU brain institute [26]. The dataset X ∈ R190×74×79 consists
of fMRI time series for the regions of interest in the cc200 parcella-
tion for a total of 79 individuals, 42 of which correspond to healthy
subjects and the others to subjects with ADHD.

We independently compute the core scores of different individ-
uals from their fMRI data. We denote the average of the core score
vectors of healthy subjects by c̄HC and that of subjects with ADHD
by c̄ADHD. The magnitude of difference between the normalized av-
erage core score vectors of the two groups, |c̄HC − c̄ADHD|, serves
as a measure of the differences in coreness of different brain regions
across the two groups. The highest difference in connectivity (de-
noting difference in interactions) in the estimated networks is ob-
served in the following regions: paracentral lobule, inferior frontal
gyrus, anterior singulate and insula. Fig. 4 shows 10 regions with
the largest difference in connectivity, as measured by the 10 largest
values of |c̄HC− c̄ADHD|. The darker nodes in the figure denote the
regions with a larger difference in the cores scores of the two groups.
These identified regions, namely, paracentral lobule, inferior frontal
gyrus, anterior cingulate and insula coincide with those reported
in [27] as the regions with differences in activation for healthy indi-
viduals and patients with ADHD.

6. CONCLUSIONS

We developed a generative model to relate node attributes to the core
scores of vertices through a latent graph structure. Based on the pro-
posed generative model, we presented a joint estimator to simultane-
ously infer the vertex core scores and a sparse graph whose sparsity
pattern is determined by the core scores. The recovered graphs can
be readily used to perform core-periphery detection. We presented a
block coordinate ascent algorithm to solve the proposed estimation
problem. We demonstrated via numerical experiments that the pro-
posed method learns a core-periphery structured graph from only the
node attributes while learning core scores on par with methods that
use the ground truth network as input. We also applied our method to
fMRI data to infer the regions that are the most affected in subjects
with ADHD.
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