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ABSTRACT

A method of interpolating the acoustic transfer function (ATF) be-
tween regions that takes into account both the physical properties of
the ATF and the directionality of region configurations is proposed.
Most spatial ATF interpolation methods are limited to estimation in
the region of receivers. A kernel method for region-to-region ATF
interpolation makes it possible to estimate the ATFs for both source
and receiver regions from a discrete set of ATF measurements. We
newly formulate the reproducing kernel Hilbert space and associated
kernel function incorporating directional weight to enhance the inter-
polation accuracy. We also investigate hyperparameter optimization
methods for this kernel function. Numerical experiments indicate
that the proposed method outperforms the method without the use of
directional weighting.

Index Terms— Acoustic transfer function, Helmholtz equation,
kernel ridge regression, directional weighting, hyperparameter opti-
mization.

1. INTRODUCTION

The acoustic transfer function (ATF) characterizes sound propaga-
tion between two points in an acoustic environment, which is equiv-
alent to the frequency response from a source to a receiver at these
points. The ATF estimation of an environment has many applica-
tions, such as sound reproduction [1]], sound field equalization [2],
echo cancellation [3]], and speech dereverberation [4].

The spatial interpolation of the ATF is widely studied because of
its applicability. The ATF is generally represented as the frequency
response of an impulse signal under the assumption of a linear time-
invariant system. Thus, one method is to treat the ATF as a rational
transfer function with poles/zeros [3.16]]. Although the pole locations
relative to the receiver position can be predicted, the relation between
the locations of poles and/or zeros and the source position cannot. In
addition, this method is dependent on the room shape and its eigen-
modes. Several attempts have been made to spatially interpolate the
ATF based on the sparsity of planewave components [7,8]. How-
ever, those methods are limited to variable receiver positions within
a receiver region, with a fixed source.

Sound field estimation or reconstruction is a problem similar to
the spatial interpolation of the ATF, and is aimed at estimating the
continuous pressure distribution from a discrete set of microphones.
Many sound field estimation methods are based on series expansions
of finite-dimensional basis functions using planewaves and spherical
wavefunctions [9i/10]. An alternative approach is the kernel method,
where the solution space of the homogeneous Helmholtz equation
is defined as the reproducing kernel Hilbert space (RKHS), and the
estimate is obtained by kernel ridge regression [11l/12]]. This infinite-
dimensional analysis of the sound field makes it possible to estimate

it without truncating the expansion order and has been used in vari-
ous applications, such as spatial audio reproduction [13\|14], active
noise cancellation [15]], and sensor placement optimization [16].

In a prior work of the authors [17]], an ATF interpolation method
for both variable source and receiver positions, i.e., region-to-region
ATF interpolation, based on the kernel method was proposed. The
definition of the RKHS is based on acoustic properties of ATFs: the
constraint of satisfying the homogeneous Helmholtz equation for the
reverberant component and acoustic reciprocity. This method signif-
icantly outperformed the method based on a finite-dimensional ex-
pansion of spherical wavefunctions proposed in [18].

In this paper, we extend the kernel method of region-to-region
ATF interpolation to incorporate directional weight. The directional
weight has recently been introduced in the kernel method for sound
field estimation to take prior information on source directions into
consideration [[19,20]. We introduce the directional weight for the
region-to-region ATF interpolation to incorporate knowledge of the
configuration of source and receiver regions. Since the use of direc-
tional weight requires the determination of several hyperparameters
of the reproducing kernel functions, we also investigate hyperparam-
eter optimization methods. Numerical experiments are conducted to
compare the proposed method with the method without directional
weighting in order to evaluate the effect of directionality on the esti-
mations.

2. PROBLEM STATEMENT AND PRELIMINARIES

Given a space Q@ C R® with stationary acoustic properties, our ob-
jective is to estimate the ATF h: Qr x s — C between any
source/receiver pair of positions r € Qr C Qands € Qg C Q,
where (2s and Qg are the source and receiver regions, respectively

(see Fig.[D).

2.1. Preliminaries

We assume that any ATF h can be separated into two components: a
known direct component hp given as the free-field Green’s function
Gy and an unknown reverberant component hr, as shown in [17]
18]. hr satisfies the homogeneous Helmholtz equation [21]. These
assumptions are represented as

h(r|s, k) = ho(rs, k) + he(r|s, k) W
eiklr=sl
ho(r]s, k) = Go(r|s, k) = anfr —s| ©

(Vi +k*)hr(r]s, k) = (V2 + k*)he(rls,k) =0, (3

where r|s is the source/receiver pair of positions, i is the imaginary
unit, VZ and V2 are the Laplacian operators on the coordinates of
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Fig. 1: Schematic diagram of a region-to-region ATF interpolation
problem.

r and s, respectively, £ = 27 f /c is the wavenumber, f is the fre-
quency, and c is the speed of sound. Hereafter, k in the argument of
the ATFs is omitted for notational simplicity.

2.2. Region-to-region ATF interpolation problem

We distribute a set of M receivers at points {rm}f\,{:l and L sources
at points {s;}¥_, to obtain a total of N (= LM) ATF measurement
values. We collectively denote q, = ry,|s; for the position pairs
withindexn =m+ (I —1)M (€ {1,...,N}). Asetof N ATFsis
given, and then the direct component is removed from them to obtain
the measurement vector y = [y1, ... 7yN]T corresponding to each
an. We define our optimization problem as

hr = arg min J (f)
fes

N
T =D lyn— flan)? +Af3e, fe#, @

where A > 0 is the regularization constant and ¢ is the feature
space to which the interpolation of the reverberant component be-
longs. This interpolation function is then added to the direct compo-
nent to obtain A

h(r|s) = hp(r|s) + hr(r]s). 5)

2.3. Kernel ridge regression

We consider the space J# to be a reproducing kernel Hilbert space
(RKHS). That is, it is a Hilbert space (S, (-,-) ») that admits a
reproducing kernel function . The reproducing kernel is a bivariate
function that satisfies:

(k(-,r|s), e = f(x|s), Vr € Qr, Vs € Qs. (6)

In that case, the interpolation function hr is given by kernel ridge
regression:

hr(r]s) = w(r[s)(K + A1) 'y, ©)

where k(r|s) = [k(r|s,q1), ..., k(r|s,qn)] is the kernel function

vector, I is the identity matrix, and K is the Gram matrix defined as
Klan,ai)  k(91,92) (a1, an)

K = : : : . ®)

k(an,a1) s(aw,qz) c(an, qN)

3. REGION-TO-REGION ATF INTERPOLATION WITH
DIRECTIONAL WEIGHTING

We previously formulated an RKHS for solving () based on the
spherical wavefunction expansion in a previous study [[17]. We now
formulate an RKHS based on the planewave expansion incorporating
directional weight to take into consideration the behavior of the ATF
with respect to the relative positions of {2r and €2s.

3.1. Feature space definition

Since the reverberant component hr does not include any sources in
Qs and (g, hr can be represented by a planewave expansion, i.e.,
Herglotz wavefunction [22]], as

he(r]s) = T (ER; r|s) , ©)

T(f;xls) = / GFETESS) £ Gdpds,  (10)
S2xS2

where T is the operator for the planewave expansion, and S? is the
set of vectors in RR? of unit norm, representing directions. Therefore,
hr(t, 8) is the complex amplitude of the planewave component of
hr from the source direction § to the receiver direction t. The reci-
procity of hr imposes the condition that hgr (£, §) = hr (S, £). Thus,
our inner-product space (S, (-, -) ») is defined as

H :{hR -7 (ER;r|s)~: hr € L*(W,S? x S?), a

P (F,8) = hn(5,7) ¥, 8 € 57

f(£,8)3(F,8) o
oy = [ TG aas vige e, a2
where = is the complex conjugate, W: S? x S — R, is a di-
rectional weighting function, and L?(W,S? x S?) is the space of
functions of bounded square integral for W. Under these condi-
tions, (7, (-, ) ») inherits the completeness of L? spaces [23] and
as such is a Hilbert space. We can show that it is an RKHS by show-
ing that the following function is its reproducing kernel:

To show that this function is the reproducing kernel, we only
have to show that it satisfies the projection property for any given

fen:

(steri). Proe = [ I T s
_ % (z(Fixls) +2(Fisir))
IVIECE ) )
Since f is reciprocal, we have
(5 (- 118), F)oe = (xls). (14)

We also consider that the directional weighting function W is
separable for I and §, that is,

W (t,8) = w(t)w(8), (15)

where w: S — Ry is a directional weighting function in a single
direction.
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Fig. 2: Directional weighting function w when Vo =
[-1/v/2,-1/v/2,0]", v = 0.01, and # = 100. The gain is given
by the distance from the origin to the surface, quantified according
to the bar on the right.

3.2. Proposed directional weighting function

Since the direct component is removed from the measurements to
obtain the reverberant component, the directional weighting func-
tion for the region-to-region ATF interpolation should have minimal
gain in the direction connecting the centers of both regions, which is
defined as Vo. Therefore, we define the directional weighting func-
tion w as

o) = L 2 _ cosh(BV - Yo)\ o
w(v)—47r<1+fy cosh(3) >7V€S. (16)

The hyperparameters S and -y characterize €2 acoustically. Since the
direct components are expected to be weaker, the early reflections
are expected to be significantly more influential. An increase in
makes the weight more selective in regards to the lateral components,
while  sets the minimum gain baseline for all directions.

To better illustrate this, an example of the directional weighting
function is plotted in Fig.[2l which shows that the weight is minimal
in the chosen direction V¢ but maximal in the lateral directions. 3
controls the width of the cavity passing through V¢, while ~y controls
the depth.

3.3. Relation to prior work using uniform weight

By setting v = 1 and 8 = 0, the directional weighting function
becomes uniform, i.e., w = 1/4m. The reproducing kernel of this
uniform weight has the closed form

1, ,
w(rls, rls') = 5 (Go(kllr —x'ljo(klls —s'll)

+jo(klls — x'[[)jo(klIr = s"I1)) ,

an

where jo is the Oth-order spherical Bessel function of the first kind.
This kernel function is identical to that used in [17], making both
estimations equivalent.

4. HYPERPARAMETER OPTIMIZATION FOR
DIRECTIONAL WEIGHT

The introduction of hyperparameters in (I6) also necessitates a cri-
terion for choosing them. Although the profile of the reverberant
component is understood, the exact balance between the direct and
lateral component gains is not known outright. There are several
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Fig. 3: Experimental setup utilized for the simulations. Red dia-
monds represent sources and blue circles represent receivers.

methods of hyperparameter optimization used for kernel ridge re-
gression [241125]. For this application, we employ leave-one-out
cross-validation (LOO) because of its simplicity and nearly unbiased
nature [26].

We begin the computation of LOO by selecting a data point and
measurement point pair (qn, Y») to remove from the data set. We
then derive the desired model using the remaining N — 1 elements
of the data set and compute the error in estimating y,, with this partial
model. The value of LOO is the average of all errors calculated by
repeating this process exhaustively:

N
L00(y, ) = 1 > (falan) ~wn), (8

n=1

where ¢ is the chosen loss function, and fn is the model derived
when considering all data pairs except (qn,yn). We consider two
types of loss function ¢: square error (SQE) and Tukey loss.

SQE(z) = |z|? (19)
o ( |z|2>3>
— (11— - = , 2 <o

Tukey(z) = 62 < o ,  (20)
%, l2] > o

where z is a complex variable, and o is the selectivity parameter.
Tukey loss is more selective than SQE, which means that these loss
functions have similar behavior near 0, but Tukey loss has slower
growth for higher discrepancies. This selectivity makes Tukey loss
more resilient to outliers.

Both SQE and Tukey loss are differentiable with respect to
the hyperparameters, meaning that LOO can be optimized using
gradient descent methods. We applied the improved robust back-
propagation algorithm introduced in [27].

5. NUMERICAL SIMULATIONS

The proposed method using directional weight was evaluated using
3D acoustic simulations based on the image source method [28] by
comparing it with the method using uniform weight. The room used
for the evaluation was shoebox-shaped and had 3.2 m x 4.0 m X
2.7 m dimensions. The reflection coefficients of the walls were set
so that the reverberation time Tgo was 0.45 s. The source and re-
ceiver regions were spheres of 0.2 m radius whose centers were
so = [0.35,0.43,0.29]" m for Qs and ro = —so for Qr. The
origin of the coordinate system was set at the center of the room. We
used Vo = (ro — so)/||ro — so|| for the directional kernel.
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Fig. 4: NMSE performance of the methods compared.

The measurement points were given for a total of L = M = 41
points distributed on two spherical layers. The point distribution was
given by the spherical ¢-design [29]: ¢ = 4 for the outer layer and
t = 3 for the inner layer. We also added Gaussian noise so that the
signal-to-noise ratio was 20 dB. The parameter o in the Tukey loss
20) was set to 0.4, which was determined so that the probability of
the error falling within four standard deviations was above 99%. The
regularization parameter ) in (Z) was set to 10~ 2.

The evaluation measure was defined as the normalized mean
square error (NMSE),

>, [l) - wa)|”

NMSE = 10log;, SRICALE ,

2D

where q;, denote the nth evaluation source/receiver pair. We set
9025 source/receiver pairs of evaluation.

The NMSE with respect to the frequency ranging from 100 to
1150 Hz is shown in Fig. @l We also show the estimated ATF in
Qr generated by a single source point at [0.35, 0.43,0.29]" m for
950 Hz in Fig.[Sl The normalized squared error distribution of this
plot is also shown in Fig.[6l which is defined as

h(rlso) — hirlso)|’

NSE(r) = 101log;, RCDE

(22)

The proposed method using directionally weighted kernels achieved
alower NMSE than the uniform counterpart for every frequency. For
the SNR of 20 dB, the more selective Tukey loss also significantly
outperformed the simpler SQE used in LOO. These results indicate
that the directional weight is effective for the region-to-region ATF
interpolation problem. In addition, LOO with Tukey loss is more
useful for hyperparameter optimization than the simple SQE loss.

6. CONCLUSION

We proposed a kernel interpolation method for region-to-region ATF
interpolation with directional weighting. The reproducing kernel
Hilbert space and associated reproducing kernel function are for-
mulated on the basis of planewave decomposition, having proper-
ties of the Helmholtz equation constraint, acoustic reciprocity, and
directionality. The spatial interpolation of the ATF is achieved by
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Fig. 5: Distributions of true and estimated ATFs in (g from the
center of Qs at [0.35,0.43,0.29]" m for 950 Hz. The black circle
indicates the bounds of Qr.
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Fig. 6: Distributions of NSEs in Qr.

kernel ridge regression using this kernel function. Hyperparame-
ters included in the kernel function are optimized by leave-one-out
cross-validation. In the numerical experiments, the proposed method
achieved highly accurate interpolation compared with the method
using uniform weight. Furthermore, robustness to the noise was sig-
nificantly improved by using Tukey loss in LOO.
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