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ABSTRACT

We propose a new meta learning based framework for low re-
source speech recognition that improves the previous model
agnostic meta learning (MAML) approach. The MAML is a
simple yet powerful meta learning approach. However, the
MAML presents some core deficiencies such as training in-
stabilities and slower convergence speed. To address these
issues, we adopt multi-step loss (MSL). The MSL aims to
calculate losses at every step of the inner loop of MAML and
then combines them with a weighted importance vector. The
importance vector ensures that the loss at the last step has
more importance than the previous steps. Our empirical eval-
uation shows that MSL significantly improves the stability
of the training procedure and it thus also improves the accu-
racy of the overall system. Our proposed system outperforms
MAML based low resource ASR system on various languages
in terms of character error rates and stable training behavior.

Index Terms— low resource languages, meta learning,
MAML, automatic speech recognition

1. INTRODUCTION

Modern deep learning based end-to-end (E2E) models have
lately become extremely popular in the speech community [1]]
and have achieved a significant milestone in terms of perfor-
mance. These systems have been deployed under commercial
domains as they have shown consistently lower word error
rates that are close to 1-2% [2]]. The modern ASR systems
are mostly trained in end-to-end (E2E) fashion without re-
quiring resources like a pronunciation dictionary and a lan-
guage model as separate modules. These systems are able
to achieve such a high degree of accuracy mainly because
they are trained on various high performance large vocabulary
datasets. However, these E2E systems tend to perform much
worse for the languages that do not have such large quantities
of annotated data.

Among roughly 7000 languages spoken across the world,
there are only around 100 languages that have well-established
speech recognition systems [3]]. The rest of the languages are
considered as low resource languages because they do not
have a huge amount of annotated speech data, strong pro-
nunciation dictionaries, and a huge collection of unpaired
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texts. A lot of progress has been made in low resource speech
recognition, which includes efforts like transfer learning [4]]
and multilingual training [5]. Recently, a new paradigm, meta
learning has been explored for low resource speech recogni-
tion [6]. Meta learning (also known as learning to learn) is a
machine learning technique, where learning is done on two
levels. On one level (inner loop) model acquires task specific
knowledge, whereas the second level (outer loop) facilitates
task across learning [7]].

Previously, Hsu et al. [|6] proposed a meta learning frame-
work based on the MAML approach for ASR for low re-
source language. The proposed framework outperformed the
no-pretraining and multi-lingual training settings. Similarly,
Winata et al. [[8] incorporated the MAML approach for the
few shot accent adaptation task for the English. The MAML
approach in general is a very straightforward and powerful ap-
proach. However, it is prone to numerous problems, including
unstable training and slow convergence speeds. These issues
also impact the generalizability of the model. Thus, to deal
with these issues, in this paper we adopt the multi-step loss
[7], which is introduced to stabilize the meta training proce-
dure. The meta training approach with multi-step loss cal-
culates the inner loss after every inner step updates and later
computes the weighted sum of all the inner losses.

We evaluated our proposed approach on 10 different lan-
guages present in the Common Voice v7.0 dataset. All these
languages are represented in form of a low resource setting
where the language data ranges from 0.5 hours to 300 hours.
We find that our approach indeed improves the training insta-
bilities of the MAML approach, which in turn improves the
overall accuracy of the model.

2. RELATED WORK

2.1. Meta Learning

Meta learning is not a new idea but begin to gain attention in
recent times. Recently, in the context of deep learning, meta
learning comes into the limelight due to its wide range of ap-
plications and advantages. Meta learning helps to generalize
to various tasks faster with few steps and examples. Literature
suggests the application of meta learning in two ways where
the first is learning a better initialization of network parame-
ters [9] and the second is learning a strategy or procedure for



updating the parameters of the network [10], [1L1]].

Meta learning has been applied to a range of research do-
mains including various computer vision tasks, natural lan-
guage processing and recently automatic speech recognition.
In the computer vision area, meta learning has been exploited
for the few-shot image classification task [[12f], object detec-
tion [13] and video generation [14]. In the natural language
processing domain, meta learning has shown promising re-
sults in neural machine translation (NMT) for resource con-
straint languages [15]. Apart from this, recently researchers
have tried meta learning for speech processing tasks, such
as automatic speech recognition [6]], speaker adaptation [[16],
[[17]] and recognition [[18]], cross-lingual [[19] and cross-accent
adaption [8].

2.2. Low Resource Speech Recognition

The development of a speech recognition system for a low
resource languages has been a very active research area for
the past few years. The regular E2E ASR systems designed
for resource rich languages seem not to work for low resource
languages due to the lack of annotated speech data or other re-
sources. There have been many attempts made to alleviate the
scarcity of labelled speech data. These efforts include, speech
data augmentation [20], transfer learning [4]], multilingual [S]],
cross-lingual [[19]] and multi-task learning [6]. Recently, unsu-
pervised cross-lingual wave2vec 2.0 XLSR model [21] shown
a huge performance boost compared to other previous state-
of-the-art models. Further, there have been recent attempts
to explore a new research direction of meta learning for low
resource languages. The idea is to extract meta parameters
learned over multiple source languages and then bootstrap
these learned meta parameters to fine-tune on the target lan-
guages. The whole process can be seen as learning a model
that can perform fast adaptation to target languages with few
epochs and data samples. As fine-tuning requires few training
samples, this process of meta learning is totally aligned with
our proposed framework of ASR for low resource languages.

3. PROPOSED SYSTEM

Our proposed system consists of two core components. The
first is an ASR model that acquires language specific knowl-
edge and the second is a multi-step loss based model agnostic
meta learning algorithm.

3.1. The ASR Model

For our proposed system, we adopt the transformer ASR
model [22] as our language specific model. The transformer
model is a sequence-to-sequence model based on the encoder-
decoder architecture. The proposed model extracts the input
features using the learnable VGG based convolutional neural
network (CNN) model [23]]. The input embeddings produced
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Fig. 1: The Transformer model for ASR

by the feature extractor are then fed to the encoder module
through the positional encoding setup. The positional encod-
ing setup generates a vector that is served as context for the
symbols. Afterward, the outputs of the encoder module are
passed on to the decoder module, where a multi-head atten-
tion mechanism is employed on these encoder outputs. The
attention mechanism applies masking in the decoder block
to restrict the attention layer from attending to any future
tokens. Finally, the output of the decoder block goes through
a linear and softmax layer and generates the predictions. The
entire training process is optimized by maximizing the log
probability using next step prediction based on the last output
token. In the following equation, x, y; and y}_, are the input
character, next predicted character, and true label of the last
character, respectively.
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3.2. Meta Learning Setup

In general, our proposed meta learning setup aims at learn-
ing the initial parameters for the model in a way that it can be
quickly adapted to new languages with a fewer number of gra-
dient descent steps. We adopt multi-step loss from MAMLA++
[7] procedure over standard MAML as MAML tends to have
unstable training procedure. This can affect the overall speed
of convergence, and also has a negative impact on the accu-
racy of the model. Figure |2 shows the computational graph
for both MAML and MAML with multi-step loss. We se-
lect support samples (zg,ys) and validation data samples
(z7,yr) from our source languages set. We start optimizing
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Fig. 2: MAML (Left) vs MAML with MSL (Right) (adopted
from [7]])

LY = L(yr, f(xr,0N))

the inner loop by initializing our ASR model f with 6§y = 6.
Afterwards, the ASR model produces logits f(zg,6;—1) by
using samples from training set and parameters 6; ;. Here ¢
represents i*" step of total N steps. In the next step, loss L7 ;
is computed over true labels ys and logits. Further, the L7 ;
is utilized to update the current parameters of the model.

The inner optimization loop of our MSL MAML approach
differs from MAML, where instead of using 6 parameters
for computing target set loss, our MSL MAML approach goes
on using 6; parameters. After completing the inner loop, we
obtain NN target set losses as in Eq. 2] which can be seen as
a multi-step loss, where w; is the weight of step ¢ and spec-
ify the importance of per step target loss. Initially, all the
losses have approximately the same importance, while later in
training more importance is given to the losses on later steps.
This way the model gradually steps towards the MAML loss,
ensuring there is no issue of gradient degradation. Finally,

these losses are combined together using a weighted sum of
per step losses. The combined weighted loss is then used to
update the outer loop parameters 6. The advantage of cal-
culating per step loss is reducing the gradient vanishing and
exploding problem of the original MAML. Following [8]] and
[6]], we only compute first order approximation of 6.

N
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4. EXPERIMENTAL SETUP

4.1. Dataset

For our experiments, we choose Common Voice dataset ver-
sion 7 [24]. The data in Common Voice is a crowdsourced
public dataset and contains many languages including re-
source rich and low resource languages. We select 10 low
resource languages and the description is represented in Table
[[] Some of the languages are very low resource having just a
few hours of data. The audio from all the languages is down-
sampled to 16 kHz and labels are preprocessed to remove any
kind of special symbols.

Table 1: The selected low resource languages from the Com-
mon Voice dataset v7.0 and the total amount of speech data in
terms of hours.

ID | Languages | Hours
ar Arabic 85
as Assames 1
hi Hindi 8

It Lithuanian 16

mn Mongolian 12
or Odia 0.94
fa Persian 293

pa-IN Punjabi 1
ta Tamil 198
ur Urdu 0.59
Total 615.53

4.2. Methodology

Our model receives spectrogram as an input. These spectro-
gram inputs then go through a VGG based 6-layered CNN
feature extractor. We use 2 encoder layers and 4 decoder lay-
ers with 8 multi-head attention layers. Our model produces
input and output of dimension 512, whereas the inner layer
has 2048 dimensions. We set the dropout value to 0.1 and
keys and values dimensions to 64. We multilingually pretrain
our model for 100K iterations on the source language set. We
put together 3 source language sets where one set includes fa,



Table 2: The average experimental results in terms of character error rate (CER in %) on 5 target languages. We have not fine-
tune our model on the languages that are present in the pretrain source language sets. These cells are represented by hyphen

)
Pretrain lan Finetune
clrain fanguages Hindi | Mongolian | Persian \ Arabic \ Tamil
MAML | Our | MAML | Our | MAML | Our | MAML | Our | MAML | Our
[fa, ar, ta] 70.51 7047 | 61.05 | 60.52 - - - - - -
[ar, mn, 1t] 71.61 71.37 - - 4796 | 45.45 - - 40.96 | 35.17
[or, pa-IN, hi, ur, as] - - 62.26 | 59.50 | 5242 | 5241 | 36.00 | 36.09 | 4596 | 46.60

ar and, ta. The other set has ar, mn and, It and the last set
consists of or, pa-IN, hi, ur, and as. During the fine-tuning
phase, we fine-tune the model on our target languages (hi,
mn, fa, ar and ta) one by one for 10 epochs. The model
is then evaluated on a test set of target language using beam
search with a beam size of 5.

5. RESULTS AND DISCUSSION

5.1. Model’s Accuracy Analysis

We evaluate the performance of our proposed MSL MAML
approach on 10 languages from the Common Voice dataset.
Our proposed approach showcases consistent improvement
in character error rates (CER in %) over the standard MAML
approach. The detailed results are presented in Table
On source languages set [fa, ar, ta] our approach achieves
70.47% and 60.52% of CER on Hindi and Mongolian lan-
guage, respectively. Our proposed model shows around 1%
of improvement over standard MAML on the Mongolian lan-
guage. On set [ar, mn, It] our approach slightly performs
better than MAML on the Hindi language. On the same set,
our approach outperforms the current MAML approach with

— MAML
—— Our

0 20 40 60 80 100 120 140
Epoch

Fig. 3: Training curve of MAML vs our approach. The train-
ing loss curve for MAML shows unstable peaks whereas our
approach shows more consistent loss curve.

5.23% and 14.13% of relative improvement on Persian and
Tamil language, respectively.

Further, the Mongolian language demonstrates 4.43% of
relative improvement over MAML on set [or, pa-IN, hi, ur,
as]. Mostly, on this pretrain language set both MAML and
our approach report similar results on Persian and Arabic lan-
guages. Interestingly, the MAML marginally outperforms our
approach on the Tamil language. Overall, our approach shows
consistent improvements across all the pretrain sets, where
excellent performance is observed on [ar, mn, 1t].

5.2. Training Performance Analysis

The multi-step loss indeed stabilizes the training process of
MAML as shown in Figure [3| The primary driver of insta-
bility in MAML is the gradient degradation problem while
training deep network [7]. Our approach resolved this issue
using multi-step loss, where the model is evaluated at each
step against its validation set. Further, importance weight also
makes sure later step loss has more importance. It also im-
proves the convergence speed of the model as shown in Figure

3 6. CONCLUSIONS

In this paper, we propose a multi-step loss based meta learn-
ing approach for speech recognition for low resource lan-
guages. The proposed system improves the inner loop op-
timization for the MAML algorithm, which results in a more
stabilized training procedure. Our empirical results show that
multi-step loss indeed improves the overall training procedure
and also has a positive impact on the accuracy of the model.
Apart from this, our model also trains faster as compared to
MAML. In the future, we plan to conduct more experiments
with more low resource languages. We would extend our ex-
periments with different combinations of languages on the
basis of their phonetic structures, geographic areas, and lan-
guage family.
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