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ABSTRACT

In recent years, end-to-end (E2E) based automatic speech recogni-
tion (ASR) systems have achieved great success due to their simplic-
ity and promising performance. Neural Transducer based models are
increasingly popular in streaming E2E based ASR systems and have
been reported to outperform the traditional hybrid system in some
scenarios. However, the joint optimization of acoustic model, lexi-
con and language model (LM) in neural Transducer also brings about
challenges in adapting ASR using just adaptation text. This draw-
back might prevent their potential applications in practice. In order
to address this issue, we propose a novel model, factorized neural
Transducer, by factorizing the blank and vocabulary prediction, and
adopting a standalone language model for the vocabulary prediction.
It is expected that this factorization can transfer the improvement of
the standalone language model to the Transducer for speech recog-
nition, which allows various language model adaptation techniques
to be applied. We demonstrate that the proposed factorized neural
Transducer yields 15.4% to 19.4% WER improvements when out-
of-domain text data is used for language model adaptation, at the
cost of a minor degradation in WER on a general test set.

Index Terms— factorized neural Transducer, Transformer
Transducer, language model adaptation, speech recognition

1. INTRODUCTION

In recent years, end-to-end (E2E) based models [1, 2, 3, 4, 5, 6,
7, 8] have attracted increasing research interest in automatic speech
recognition (ASR) systems. Compared to traditional HMM based
models, where the acoustic model, lexicon and language model are
built and optimized separately, a single neural network is used in
E2E models to directly predict the word sequence. Nowadays, neural
Transducer [9, 10, 11] and Attention-based Encoder-Decoder (AED)
[1, 12, 13] are two most popular choices for E2E based ASR systems.
AED models achieved very good performance by adopting the atten-
tion mechanism and fusing the acoustic and linguistic information at
the early stage. However, they are not streamable models in nature.
There are some efforts to allow AED models to work in streaming
mode, such as monotonic chunk-wise attention [14] and triggered
attention [15, 16]. In contrast, the neural Transducer model provides
a more attractive solution for streaming ASR and has been reported
to outperform traditional hybrid systems [17, 18, 19] in some sce-
narios. Therefore, in this work, we mainly focus on the Transducer
model in light of the streaming scenario in practice.

However, the simplicity of E2E models also brings some sac-
rifice. There are no individual acoustic and language models in a
neural Transducer. Although the predictor looks similar to a lan-
guage model in terms of model structure and an internal language
model [20, 21] could be extracted from the predictor and joint net-
work, it does not perform as a language model because the predictor

needs to coordinate with the acoustic encoder closely. Hence, it is
not straightforward to utilize text-only data to adapt the Transducer
model from the source domain to the target domain. As a result,
effective and efficient language model adaptation remains an open
research problem for E2E based ASR models.

There are continuous efforts in the speech community to ad-
dress this issue. One research direction is to adopt Text-to-Speech
(TTS) techniques to synthesize audio with the target-domain text
[17, 22, 23, 24], and then fine-tune the Transducer model on the
synthesized audio and text pairs. However, this approach is com-
putationally expensive. It is not flexible and practical for scenar-
ios requiring fast adaption. LM fusion is another popular choice
to incorporate external language models trained on target-domain
text, such as shallow fusion [25] and density ratio based LM inte-
gration [20, 21, 26, 27, 28]. However, the interpolation weight is
task-dependent and needs to be tuned on dev data. The performance
might be sensitive to the interpolation weight. There are some re-
cent efforts to fine-tune the predictor [29] or the internal language
model [30] with an additional language model loss, and then make
it behave similar to a language model. Nevertheless, the predictor in
neural Transducer is not equivalent to a language model in nature. It
needs to coordinate with the acoustic encoder, and predict the blank
to prevent outputting repetitive word [31].

As discussed above, most previous work on LM adaptation
adopted the standard neural Transducer architecture [9, 6]. In this
paper, we propose a modified model architecture to explicitly opti-
mize the predictor towards a standard neural language model during
training. We name it factorized neural Transducer, which factorizes
the blank and vocabulary prediction, allowing the vocabulary pre-
dictor to work as a standalone language model. As a result, various
language model adaptation [32, 33, 34] techniques could be simply
applied to the factorized Transducer model. The improvement of the
standalone language model is expected to yield consistent perfor-
mance gain for speech recognition, which is similar to the effect of
language model in the HMM based ASR system. We hope this work
could shed some light on the re-design of model architecture, by
disentangling the fusion of AM and LM in E2E models for efficient
language model adaptation and customization.

2. NEURAL TRANSDUCER

2.1. Neural Transducer Architecture

The neural Transducer model consists of three components, an
acoustic encoder, a label predictor and a joint network, as shown
in Figure 1. The encoder consumes the acoustic feature xt1 and
generates the acoustic representation ft. The predictor computes the
label representation gu given the history of the label sequence yu1 .
The outputs of encoder and predictor are then combined in the joint
network and fed to the output layer to compute the probability dis-
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tribution over the output layer. The computation formulas in neural
Transducer could be written as below,

ft = encoder(xt1)

gu = predictor(yu1 )

zt,u = Wo ∗ relu(ft + gu)

P (ŷt+1|xt1, yu1 ) = softmax(zt,u) (1)

Fig. 1. Flowchart of neural Transducer

In order to address the length differences between the acoustic
feature xT1 and label sequences yU1 , a special blank symbol, φ, is
added to the output vocabulary to represent a null token. Each align-
ment α contains T + U output tokens, ŷ1, ..., ŷT+U , where each
output token is an element of the set {φ,V}. The objective function
of the Transducer model is to minimize the negative log probability
over all possible alignments, which could be written as,

Jt = − logP (y ∈ Y∗|x) = − log
∑

α∈β−1(y)

P (α|x) (2)

where β : Ȳ∗ −→ Y∗ is the function to convert the alignment α to
label sequence y by removing the blank φ.

In this paper, we choose the Transformer Transducer (T-T)
model as the backbone model which uses Transformer as the acous-
tic encoder, LSTM as the predictor, by considering the performance
and computational costs. The T-T model can be trained and evalu-
ated efficiently as described in [35].

2.2. Rethinking the Blank Symbol in Neural Transducer

In the standard neural Transducer model, the predictor looks like a
language model in terms of model structure. There are some studies
claiming that an internal language model could be extracted from the
Transducer model by using predictor and joint network and exclud-
ing the blank φ connection in the output layer [20, 21]. Although
this internal language model yields a relatively low perplexity [27],
it does not actually perform as a standalone language model. As
shown in Equation 1, given the label history yu1 , the predictor needs
to coordinate with the encoder outputs ft to predict the output token
ŷt+1. In addition, it also needs to avoid generating repeated label
tokens as the duration of each label normally consists of multiple
acoustic frames [31]. Therefore, the predictor plays a special and
important role in neural Transducer rather than merely predicting
the next vocabulary token as language model.

Here, we use a simple example to further illustrate why the pre-
dictor is not working as a language model. In Figure 2, the label of
the acoustic feature xT1 consists of three characters, “C A T ”. Nor-
mally, the acoustic feature sequence is much longer than the label
sequence, i.e. T >> U . Figure 2 gives an example alignment α. In
the training stage, at the t-th frame, the target is “A”, given the en-
coder output ft and the label history “<s> C”. While at the t+ 1-th
frame, the target is φ, given the encoder output ft+1 and label his-
tory “<s> C A”. It is safe to assume that the encoder outputs ft+1

and ft are similar since there is only one acoustic frame difference
and they both lie in the middle of the pronunciation of “A” as illus-
trated in Figure 2. In the t-th frame, the predictor predicts “A” given
the label history “<s> C”, which is consistent with the language
model task. However, in the t + 1-th frame, the predictor helps to
predict “φ” given label history “<s> C A”, which is different to the
language model task where the vocabulary token T is predicted as
target. Furthermore, there is no blank φ in the language model. By
considering the large amounts of blank φ in each alignment, the pre-
dictor is not only working as a language model. More importantly, it
needs to coordinate with the acoustic encoder output and label his-
tory to generate the neural Transducer alignment. Therefore, the job
of predictor is not only predicting normal vocabulary tokens but also
generating the blank φ for the co-ordination job. Because of this
reason, the predictor cannot be considered as a pure LM [31].

Fig. 2. An example alignment in neural Transducer for an audio with
label “C A T”. The label at time t is A and at time t+ 1 is φ.

3. FACTORIZED NEURAL TRANSDUCER

As discussed in Section 2.2, the predictor has two jobs, which are
predicting the blank and normal vocabulary tokens according to the
Transducer alignment, which hinders the direct use of text-only data
for LM adaptation on the predictor. In this section, we introduce a
novel model architecture, which is called factorized neural Trans-
ducer. Instead of using one predictor to predict both blank and vo-
cabulary tokens, the proposed model factorizes the original predic-
tion network into two separate networks, predicting vocabulary to-
kens and blank respectively. A standard language model could be
used as the vocabulary predictor since there is no blank in the output
layer. As a result, the vocabulary predictor could be optimized with
the standard LM loss, i.e. cross entropy, on the label sequence during
training, and further improved via various LM adaptation techniques
given the target-domain text in test time.

The architecture of the proposed factorized neural Transducer
model is illustrated in Figure 3. Two predictors are adopted, one
is dedicated to predict the blank φ, which is called blank predictor;
and the other is to predict the label vocabulary excluding φ, which is
called vocabulary predictor. The vocabulary predictor is the same as
a normal language model, using history words as input and the log
probability of each word as output. The acoustic encoder output ft is
shared by these two predictors to extract the acoustic representation,
but with slightly different combinations. For the prediction of the



blank φ , it is important to fuse the acoustic and label information as
early as possible. Therefore, we adopt the same combination as [6]
with a joint network. While for the vocabulary part, we would like
to keep a separate language model module. Hence, the acoustic and
label information are combined in the logit level, which is similar to
the original Transducer paper [9]1. The exact computation formulas
could be written as below,

ft = encoder(xt1)

gbu = predictorb(yu1 )

zbt,u = Wb
o ∗ relu(ft + gbu)

gvu = predictorv(yu1 )

zvt = Wv
enc ∗ relu(ft)

zvu = log softmax(Wv
pred ∗ relu(gvu))

zvt,u = zvt + zvu
P (ŷt+1|xt1, yu1 ) = softmax([zbt,u; zvt,u]) (3)

Fig. 3. Architecture of factorized neural Transducer

The loss function of the factorized Transducer can be written as

Jf = Jt − λ logP (yU1 ) (4)

where the first term is the Transducer loss as defined in Equation 2
and the second term is the language model loss with cross entropy.
λ is a hyper-parameter to tune the effect of language model loss.

The orange part, denoted as vocabulary predictor, in Figure 3
has the same structure as a standalone language model, which can
be viewed as the internal language model in the factorized Trans-
ducer. Note that its output is the log probability over the vocabulary.
Hence in theory this internal language model could be replaced by
any language model trained with the same vocabulary, e.g. LSTM
and n-gram LMs. There is no large matrix computation in the fac-
torized Transducer model in the joint network as the standard Trans-
ducer model. As a result, the training speed and memory consump-
tion can be improved compared to the standard Transducer model,

1we also tried to apply the log softmax function on the vocabulary en-
coder (i.e. Enc Proj) in Figure 3, it presented similar performance, while
introduced additional computational cost.

test set adapt words(utts) test words(utts)
Librispeech 9.4M(281k) 210k(11k)
call-center 1.4M(76k) 77k (4k)

Table 1. Statistics of two test sets for language model adaptation

although there is a slight increase of the model parameters due to the
additional vocabulary predictor.

In the training stage, the factorized Transducer model is trained
from scratch using the loss function defined in Equation 4. In the
adaptation stage, since the vocabulary predictor works as a language
model, we could apply any well-studied language model adaptation
techniques to adapt the language model on the target-domain text
data. For simplicity, in this paper, the language model is directly
fine-tuned with the adaptation text data for a specified number of
sweeps.

4. EXPERIMENTS

In this section, we investigate the effectiveness of the proposed fac-
torized Transducer model on three test sets, the first one is a general
test set to verify the impact of architecture change, and two domain-
specific test sets, one is from the public Librispeech corpus, the other
is an in-house call center task, are used to evaluate the language
model adaptation of the factorized Transducer.

4.1. Experiment Setup

64 thousand (K) hours of transcribed Microsoft data are used as the
training data. The general test set is used to evaluate the bench-
mark performance of the standard and factorized neural Transducer,
which covers 13 different application scenarios including dictation,
far-field speech and call center, consisting of a total of 1.8 million
(M) words. The word error rate (WER) averaged over all test sce-
narios is reported. Two test sets are used for adaptation, the first
one is from the public Librispeech data, where the acoustic tran-
scription of the 960-hour training data is used as the adaptation text
data, and the standard dev and test sets are adopted for evaluation.
The other test set is an internal Microsoft call center test set. The
statistics of these two test set is summarized in Table 1. All the
in-house training and test data are anonymized data with personal
identifiable information removed. 4000 sentence pieces trained on
the training data transcription was used as vocabulary. We applied a
context window of 8 for the input frames to form a 640-dim feature
as the input of Transducer encoder and the frame shift is set to 30ms.
Transformer-Transducer (T-T) models are adopted for all Transducer
models, where the encoder consists of 18 transformer layers and pre-
dictor consists of two LSTM layers. The total number of parameters
for standard and factorized Transducer models are 84M and 103M
respectively. Note that the encoder of these two Transducer mod-
els are the same and the increase of model parameter in the factor-
ized Transducer is mainly from the additional vocabulary predictor.
Utterances longer than 30 second were discarded from the training
data. The T-T models are trained using the chunk based masking ap-
proach as described in [35], with an average latency of 360ms. In this
paper, we trained the whole model from scratch without pretraining
on the encoder or predictor.

The first experiment is to evaluate the benchmark performance
of the factorized T-T model and standard T-T model on the general
test set. The factorized Transducer with different λ as defined in
Equation 4 are also investigated. According to the results shown in



model λ PPL WER
std T-T - 8.10

Factorized T-T

0.0 109.2 8.21
0.1 31.0 8.23
0.2 29.3 8.25
0.5 28.0 8.32
1.0 27.7 8.40

Table 2. PPL and WER results of standard and factorized T-T mod-
els on the general test set, note that PPLs are computed over sentence
piece level.

model PPL
WER

dev test
clean other clean other

std T-T - 5.90 13.31 5.86 13.38
+shallow fusion 5.29 12.03 5.20 12.36
factorized T-T 88.9 6.18 13.76 6.24 14.14

+adapt text 45.8 4.98 11.49 5.27 11.96
(rel. WERR) -19.4% -16.5% -15.5% -15.4%

Table 3. PPL and WER results of factorized T-T on Librispeech test
set for language model adaptation.

Table 2, the factorized Transducer models degrade the WER perfor-
mance slightly compared to the standard Transducer model, which
is expected due to the factorization of acoustic and label information
for vocabulary prediction. The WER of the factorized T-T increases
marginally with increase of λ. In contrast, the PPL drops dramati-
cally when we include the LM loss in Equation 4 by setting λ larger
than 0. An LSTM-LM with same model structure trained on the text
data results in a PPL of 27.5, which indicates that the internal LM
extracted from the factorized T-T presents similar PPL compared to
the standard LM. Note that the PPL reported in Table 2 is computed
on the sentence piece vocabulary of 4000 tokens. In the following
experiment, we adopt the factorized T-T with λ = 0.5 as the seed
model for LM adaptation on text data.

The next experiment investigates the language model adaptation
of the factorized T-T model on the Librispeech data. The experiment
results are reported in Table 3. Similar to the result on the gen-
eral test set, the performance of the factorized Transducer is slightly
worse than the standard Transducer without adaptation. By using the
target-domain text data, significant WER reductions can be achieved,
resulting in a relative 15.4% to 19.4% WER improvement on the dev
and test sets. The gain over the standard Transducer model is also
larger than 10% in spite of the improvement of the baseline model.
Compared to the WER of the shallow fusion on the standard T-T
model, which is shown in the second row of Table 3, the adapted
factorized T-T model still outperforms on most test sets and gives
similar performance on the test clean set.

Another experiment is conducted to reveal the relationship be-
tween the improvement of vocabulary predictor and the performance
of factorized Transducer. The plot of the PPL and WER trends with
different amounts of adapt text data is given in Figure 4. It could
be seen that the WER gain of the Transducer is highly correlated to
the PPL improvement of the vocabulary predictor, which is consis-
tent with the impact of LM in HMM based ASR systems. Note that a
sweep of the adaptation text data consists of about 10k steps, it could
be seen that four sweeps are enough for the convergence of PPL and
WER improvements in the Librispeech task.

Fig. 4. PPL and WER with the increase of LM adaptation step for
factorized Transducer in Librispeech test-other set. One sweep of
the adaptation text data consists of about 10k steps.

model PPL WER
std T-T - 37.03

+shallow fusion 34.36
factorized T-T 42.0 38.14

+adapt 24.1 32.18
(rel. WERR) -15.6%

Table 4. PPL and WER results of factorized T-T on the in-house call
center test set for language model adaptation

The last experiment aims to validate the effectiveness of the lan-
guage model for factorized Transducer on an in-house call center test
set. The experiment results can be found in Table 4. By fine-tuning
the vocabulary predictor of the factorized Transducer on the adapt
text, it yields a relative 15.6% WER improvement, which is consis-
tent to the observation on Librispeech, outperforming the shallow
fusion on the standard T-T model. This demonstrates that the im-
provement of the vocabulary predictor could be transferred to the
Transducer model. This is of great practical value as it is much easier
to collect a large scale of text data compared to the labelled speech
data in practice.

5. CONCLUSION

Recent years have witnessed the great success of the E2E based mod-
els in speech recognition, especially the neural Transducer based
model due to their streaming capability and promising performance.
However, how to utilize the out-of-domain text for efficient language
model adaptation remains an active research topic for neural Trans-
ducer. In this paper, we proposed a novel model architecture, fac-
torized neural Transducer, by separating the blank and vocabulary
prediction using two predictor networks, and adopting a standalone
language model as the vocabulary predictor. Thanks to the factor-
ization, we could adapt the vocabulary predictor with text-only data
in the same way as conventional neural language model adaptation.
The improvement of the language model is able to be transferred
to the Transducer performance on speech recognition. The exper-
iment results demonstrate that significant WER improvements can
be achieved by using the target-domain text data, outperforming the
shallow fusion on standard neural Transducer model.
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