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ABSTRACT

Humans express their emotions via facial expressions, voice intona-
tion and word choices. To infer the nature of the underlying emo-
tion, recognition models may use a single modality, such as vision,
audio, and text, or a combination of modalities. Generally, models
that fuse complementary information from multiple modalities out-
perform their uni-modal counterparts. However, a successful model
that fuses modalities requires components that can effectively ag-
gregate task-relevant information from each modality. As cross-
modal attention is seen as an effective mechanism for multi-modal
fusion, in this paper we quantify the gain that such a mechanism
brings compared to the corresponding self-attention mechanism. To
this end, we implement and compare a cross-attention and a self-
attention model. In addition to attention, each model uses convo-
lutional layers for local feature extraction and recurrent layers for
global sequential modelling. We compare the models using dif-
ferent modality combinations for a 7-class emotion classification
task using the IEMOCAP dataset. Experimental results indicate
that albeit both models improve upon the state-of-the-art in terms
of weighted and unweighted accuracy for tri- and bi-modal con-
figurations, their performance is generally statistically comparable.
The code to replicate the experiments is available at https://
github.com/smartcameras/SelfCrossAttn

Index Terms— Multi-modal, emotion recognition, attention

1. INTRODUCTION

Emotion recognition (ER) models use one or more modalities, such
as audio (language and para-language), images (facial expressions
and body gestures) and text (language) to infer the class of underly-
ing emotion [1]. Multi-modal models are designed to effectively fuse
relevant information from different modalities and generally outper-
form uni-modal models [2, 3]. ER models may use as input raw sig-
nals (speech or face images) [4, 5, 6] or handcrafted features [3, 7].
Commonly used speech features are low-level descriptors, such as
formants, pitch, log energy, zero-crossing rate and Mel Frequency
Cepstral Coefficients (MFCCs) [3, 7]. Facial expressions can be rep-
resented by fixed features based on entities that are always present on
the face, such as eyes, mouth and eyebrows and/or transitory features
based on temporary entities like wrinkles and bulges [8]. Tokenized
words can be mapped into linguistic features using word embedding
algorithms, such as word2vec [9] or GloVe [10].

ER models based on Deep Neural Networks (DNNs) may con-
tain convolutional layers to extract local task-relevant components
from the input and recurrent layers to facilitate the global sequential
modelling [4, 5]. Attention mechanisms [11] integrated in DNN
architectures encourage the ER model to focus on task-relevant
time instants [3, 6]. The general purpose of attention mechanism

is to provide varying levels of weights to different time-steps in a
sequence. There are two types of attention mechanisms, namely
self (or intra-modal) attention and cross (or inter-modal) atten-
tion. A self-attention mechanism computes the representation of a
uni-modal sequence by relating different positions of the same se-
quence [6, 12]. Cross-modal attention mechanisms use one modality
to estimate the relevance of each position in another modality [13].
For example, a self-attention mechanism between 2 recurrent lay-
ers can be used to emphasise task-relevant time-steps in an input
speech signal [6], whereas an iterative multi-hop cross-attention
mechanism may select and aggregate information from multi-modal
features obtained with Gated Recurrent Unit (GRU) layers [3, 7].
Transformers [14], which contain a Multi-Head Attention (MHA)
module, are also becoming popular in modelling uni-modal as
well as multi-modal emotional data [15, 13, 16, 17]. Cross-modal
transformers use cross-attention to calculate the relevance of each
time-step in a target modality representation using a different source-
modality [13, 17]. A serial [13, 17] or parallel [16] combination of
cross and self-attention transformers aims to capture the cross-modal
and intra-modal relationships for multi-modal fusion. Considering
the interest in models combining self and cross attention-based trans-
former encoders [13, 16, 17], we conduct the first study comparing
the two types of attention mechanisms (without the other trans-
former components). To understand the differences between the two
types of attention mechanisms, we extensively compare a model
based only on cross-attention and one based only on self-attention
for bi- and tri-modal combinations. We compare the two models
on the IEMOCAP [18] dataset for 7-class emotion classification
and conclude that the cross-attention model does not outperform
the self-attention model. Nevertheless, both models improve the
state-of-the-art results on tri-modal as well as bi-modal emotion
recognition tasks in terms of weighted and unweighted accuracy
metrics.

2. CROSS AND SELF ATTENTION MODELS

Self and cross-attention models first process individual modalities
using modality-specific encoders. The encoded features are then fed
into self or cross Multi-Head Attention (MHA) [14] modules, re-
spectively. A global representation of the utterance clip is generated
as temporal average at the outputs of each attention module. The
resulting features are then concatenated and their mean and stan-
dard deviation are obtained using a statistical pooling layer. The
concatenation of mean and standard deviation vectors is then fed to
fully connected layers. The emotional class predictions are obtained
through a softmax operation. A detailed explanation is given as fol-
lows:

Let Xa ∈ Rta×da be the audio features corresponding to an ut-
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Figure 1: Architecture of the tri-modal cross-attention model. KEY
- MHA: Multi-Head Attention; Temp.: temporal; Avg.: averaging;
µ: mean; σ: standard deviation;

⊕
: concatenation operation.

terance clip, where ta is the sequence length and da is the feature
dimension. The audio encoder consists of a 1D convolution layer
followed by a bi-directional GRU. The convolution layer, which re-
fines the input feature sequence by finding task-relevant patterns, op-
erates as follows:

X ′a(t
′) = b(t′) +

ta−1∑
k=0

(W (t′, k) ∗Xa(k)), (1)

where X ′a ∈ Rt
′
a×d

′
a is the output with length t′a and dimension d′a,

t′ ∈ [0, t′a − 1], ∗ is the convolution operator,W are the weights and
b are the biases associated with the layer. Thus, the convolution layer
modifies the sequence length as well as the feature dimension.

The bi-directional GRU layer models contextual inter-dependence
of the features across time. For each element in the sequence, the
bi-GRU layer computes the following functions:


rt = σ(WirX

′
a(t) + bir +Whrht−1 + bhr),

zt = σ(WizX
′
a(t) + biz +Whzht−1 + bhz),

nt = φh(WinX
′
a(t) + bin + rt � (Whnht−1 + bhn)),

ht = (1− zt)� nt + zt � (ht−1),

(2)

where ht and ht−1 are the hidden states at times t and t−1,X ′a(t) is
the input at time t. rt, zt and nt are the reset, update and new gates,
W and b are the corresponding weights and biases, σ and φh are the
sigmoid and hyperbolic tangent functions and � is the Hadamard
product. At the output of bi-GRU, the forward and backward hid-
den states for each time-step are concatenated and the refined audio
features can be represented as ea ∈ Rt

′
a×d

′′
, where d′′ is twice the

number of hidden neurons in the GRU.

Figure 2: Attention and fusion module in the tri-modal self-
attention model. The rest of the model is same as the tri-modal
cross-attention model. KEY - MHA: Multi-Head Attention; Temp.:
temporal; Avg.: averaging; µ: mean; σ: standard deviation.

Similar to audio, the vision encoder consists of one 1D convolu-
tion layer followed by a bi-GRU layer. If Xv ∈ Rtv×dv represents
the vision features corresponding to an utterance, then at the output
of vision encoder, the features are refined to ev ∈ Rt

′
v×d

′′
. For the

text modality, the encoder consists of only one bi-GRU layer. The
input and output of text encoder can be represented by Xl ∈ Rtl×dl
and el ∈ Rtl×d

′′
respectively.

We use the MHA module [14] for self and cross-attention mod-
elling. An MHA module consists of multiple such attention opera-
tions to capture richer interpretations of the sequence. Each MHA
module requires 3 inputs, namely, Query (Q), Key (K) and Value
(V ), each of which is first projected H times to different sub-spaces
using linear layers, where H refers to number of heads. Projections
for each sub-space h ∈ {0, ...., H − 1} can be calculated as

Qh =WQ
h em, (3)

Kh =WK
h em, (4)

Vh =WV
h em, (5)

where m ∈ {a, v, l} denotes the modality. In each of these sub-
spaces, scaled dot-product attention is performed on the projections.
For a sub-space h, the attention operation is given as

Atth(Qh,Kh, Vh) = Softmax

(
QhKh

T

√
dk

)
Vh, (6)

where Atth(·) and dk refer to the attention operation in sub-space
h and feature dimensionality, respectively. The outputs of all H at-
tentions are concatenated and passed through a linear layer to obtain
the final output of an MHA module.

In the cross-attention model, a source modality is given as K
and V , whereas a target modality is fed as Q (see Fig. 1). The intu-
ition behind such an approach is to discover cross-modal interactions
by adapting the source modality to the target modality [13]. As an
example, let us take the case of audio as target modality and vision
as the source modality. The refined audio features ea ∈ Rt

′
a×d

′′
are

transformed toQ using Eq. 3 and vision features ev ∈ Rt
′
v×d

′′
toK

and V using Eq. (4)-(5). The cross-modal MHA module then maps
the vision to the audio modality and outputs vision features adapted
to audio ewav ∈ Rt

′
a×d

′′
. Note that the sequence length of the cross-

attention weighted output is the same as the target modality audio.



Table 1: Results of a 7-class emotion classification task presented as mean ± standard deviation. AMH refers to AMH [3] for tri-modal
models and to MHA [7] for bi-modal models. KEY - A: audio; V: vision; T: text; Self: self-attention model; Cross: cross-attention model.
The best results in each row are in bold font. The symbol * refers to the only three results with statistically significant difference between the
self and cross models.

Weighted Accuracy Unweighted Accuracy

Modality MDRE [19] AMH [3, 7] Cross Self MDRE [19] AMH [3, 7] Cross Self

T - - - .474 ± .030 - - - .535 ± .016
V - - - .454 ± .019 - - - .513 ± .018
A - - - .365 ± .018 - - - .452 ± .017

T+V .524 ± .021 .526 ± .024 .567 ± .022 .563 ± .022 .579 ± .015 .580 ± .019 .617 ± .015 .614 ± .020
T+A .418 ± .077 .491 ± .028 .501 ± .026 .518 ± .031* .498 ± .059 .543 ± .026 .562 ± .017 .574 ± .018*
V+A .376 ± .024 .371 ± .042 .481 ± .024 .483 ± .026 .477 ± .025 .471 ± .047 .566 ± .022 .567 ± .026

T+V+A .490 ± .056 .547 ± .025 .578 ± .024 .587 ± .022* .564 ± .043 .617 ± .016 .636 ± .017 .642 ± .019

With 3 modalities, we have 6 combinations of source-target modal-
ities and hence we use 6 MHA modules. In case of self-attention
model, the input sequence corresponding to the same modality is
used as Q, K and V (see Fig. 2). This helps to capture intra-modal
interactions in each modality. For cross-attention model, statistical
pooling is done across the concatenation of the temporal averages
of 6 cross-modal sequences, whereas for the self-attention model,
it is done across the concatenation of the temporal averages of the
self-attended sequences of all the 3 modalities.

The classifier for both models is:

ŷ = Softmax(fθ2(fθ1([µ ‖ σ]))), (7)

where µ and σ are the mean and standard deviation obtained from the
output of statistical pooling layer, ‖ represents concatenation opera-
tion, fθ1 and fθ2 denote the 2 fully connected layers with parameters
θ1 and θ2, respectively, and ŷ denotes the one-hot vector of emotion
prediction.

3. VALIDATION

In this section, we discuss the dataset and results of using cross-
and self-attention models for 7-class bi-modal and tri-modal emo-
tion recognition. We also discuss comparison with state-of-the-art
methods and experiments with additional model configurations for
both models.

We use the Interactive Emotional Dyadic Motion Capture
(IEMOCAP) [18] dataset which contains approximately 12 hours of
audio-visual dyadic emotional interactions in acted and spontaneous
settings. The dataset, recorded with 5 male and 5 female speakers,
includes the ground-truth text transcripts. The labelling of each
utterance was determined by majority voting from 3 annotators.
There is lack of consensus amongst researchers on the use of IEMO-
CAP dataset. Some use it for 4 class classification [13] by merging
different classes (happy and excited, angry and frustrated), while
others [3, 7, 19, 16] perform 7-class classification. We follow the lat-
ter. Since the creators of the dataset did not define a training-testing
split, we use the same dataset partition and features as [3, 7, 19].
The final dataset contains 7,487 utterances in total (1,103 angry,
1,041 excited, 595 happy, 1,084 sad, 1,849 frustrated, 107 surprise
and 1,708 neutral). Class sizes smaller than 100 utterances (fear,
disgust, other) are eliminated [3]. We perform 5-fold cross valida-
tion to assess the model performance. Data in each fold are split
into training, development, and testing sets (8:0.5:1.5). We train and
evaluate the model 10 times (with 10 different random seeds) per

fold, and the performance is assessed in terms of weighted accuracy
(WA) and unweighted accuracy (UWA) metrics.

For the audio modality, 40D MFCC features (frame size is set to
25 ms at a rate of 10 ms with the Hamming window) are extracted
and concatenated with their first and second order derivatives to ob-
tain the final acoustic feature dimension of 120. Audio features are
standardised by removing the mean and scaling to unit variance. For
vision data, cropped face images of speakers are fed into a ResNet-
101 [20] to obtain 2048D features at a frame rate of 3 Hz. For
text modality, each word in an utterance is represented by a 300D
GloVe [10] embedding. Note that the modalities are sampled at dif-
ferent rates and the maximum sequence length of audio, vision and
text modalities is set to 1,000, 32 and 128 respectively.

The models are implemented using PyTorch [21]. The bi-
modal and uni-modal versions of the tri-modal models are created
by removing components corresponding to the unused modal-
ity/modalities. We use Adam [22] optimiser with a learning rate
of 0.001. The learning rate is reduced by a factor 0.1 when the
validation loss has stopped decreasing for 10 consecutive epochs.
Training is stopped when UWA does not improve in the validation
set for 10 consecutive epochs and the model with best validation
UWA is used for testing. The batch size is 32 and all models are
trained using the categorical cross-entropy loss.

The audio and vision encoders contain one 1D convolution layer
each. The kernel size and stride length are both set to 1. The number
of input and output channels for audio convolution layer are 1,000
and 500 respectively while for vision they are 32 and 25 respectively.
The number of bi-GRU layers for all the 3 modalities is 1. The
number of hidden neurons in each bi-GRU layer is 60. The number
of attention heads in all MHA modules is 6 and a dropout rate of 0.1
is applied to reduce overfitting. The number of neurons in the first
and second fully connected output layers are 60 (same as number of
bi-GRU neurons) and 7 (number of output classes) respectively. All
parameters were chosen based on the performance on validation set.

Table 1 shows the performance of the self and cross-attention
models on 7-class uni-modal, bi-modal and tri-modal emotion recog-
nition tasks. We report the mean and standard deviation obtained
across 50 runs (5 folds × 10 repetitions) for each model. We also
applied two-tailed t-test with the null hypothesis that the accuracy
values of both self and cross-attention models have identical aver-
age (expected) values. Comparison of the uni-modal performances
shows that the text outperforms the vision and audio modalities. This
result is consistent with previous work [13, 19]. Since uni-modal
performance evaluation is not possible with the cross-modal model,
we report results with the uni-modal version of the self-attention



Figure 3: Confusion matrices of self (left) and cross-attention mod-
els (right) for tri-modal 7-class classification using a random fold.
The emotions classes are abbreviated with their first 3 letters.

model. Among bi-modal models, the combination of vision and text
modalities gives the best performance for both models. These re-
sults are consistent with previous work [7, 19]. Overall, both models
provide comparable performances for bi- and tri-modal cases. Self-
attention significantly outperforms cross-attention (P value < .05)
only for T+A (text and audio) and the WA of T+V+A (text, video,
and audio).

We compare with methods that use the same set of features and
dataset partition. The tri-modal models are compared with AMH [3],
the current state-of-the-art model, which uses a combination of uni-
modal GRU layers and an iterative attention mechanism1. Note that
the self-attention model exceeds the performance of AMH by 4.0
and 2.5 percentage points (pp) over mean in terms of WA and UWA,
respectively. Similar figures for the cross-attention model are 3.1 pp
and 1.9 pp. We also compare with MDRE [19], which uses recur-
rent layers to model uni-modal signals followed by aggregation and
classification using fully connected layers. The better performance
of the self and cross-attention models, as well as AMH, compared to
MDRE can be attributed to the effectiveness of the attention mecha-
nism. For bi-modal models, we compare with the bi-modal version
of AMH called MHA [7] and MDRE. Again, both models outper-
form MHA and MDRE in all the 3 bi-modal cases. Note that we
obtain bi-modal results by ablating the tri-modal models and not by
fine-tuning for individual bi-modal cases. Also, AMH, MHA and
MDRE use prosody features in addition to MFCC features for au-
dio, whereas we use only MFCC features. The state-of-the-art result
for text+audio case is obtained by [16] (0.560 WA and 0.612 UWA)
which is significantly higher than the bi-modal T+A (text and au-
dio) results. We hypothesize two reasons for this: (1) unlike [16],
the bi-modal models are not fine-tuned for the bi-modal cases; (2)
[16] uses transformer encoders that contain additional parameters
that might help in learning more complex inter-modal relationships,
whereas we use only the multi-head attention mechanism. Never-
theless, both models improve the state-of-the-art tri-modal results of
AMH.

Fig. 3 shows the confusion matrices for the self and cross-
attention models. For both models we can observe that the classes
angry and frustrated are more often confused with each other, and

1We use the revised results of AMH, MHA and
MDRE from https://github.com/david-yoon/
attentive-modality-hopping-for-SER. We note that the
WA and UWA values were swapped by the authors and we rectify this error
in Table 1.

Table 2: Weighted accuracy (WA) and Unweighted accuracy (UWA)
for 7-class emotion classification using additional tri-modal model
configurations. Self and Cross model results are also shown for com-
parison. KEY - SP: statistical pooling; Cross-noSP and Self-noSP:
cross and self-attention models without SP; Cross+Self: combina-
tion model that concatenates mean and standard deviation vectors
from self and cross-attention models.

Model WA UWA

Cross-noSP .570 ± .021 .634 ± .015
Cross .578 ± .024 .636 ± .012
Self-noSP .584 ± .021 .638 ± .019
Self .587 ± .022 .642 ± .019
Cross+Self .585 ± .028 .642 ± .020

the class happy gets confused with excited (these 2 classes are in-
herently similar). The poor performance of both models on the
class surprise can be attributed to the fact that this has the smallest
sample size in the dataset. These observations are consistent with
the previous literature [3].

In addition to the two described model configurations, we also
experimented with different variations of the tri-modal models. We
removed the statistical pooling layer from both models to assess its
significance. The outputs from all temporal averaging modules (see
Fig. 1 & 2) were concatenated and passed to the classifier module.
These models are shown as Cross-noSP and Self-noSP in Table 2.
We can make two observations. Firstly, the self-attention model out-
performs the cross-attention model (P value< .05 for WA) even after
ablating statistical pooling. Secondly, the performance of both mod-
els decreases without the statistical pooling layer. We also assessed
the performance of a combined model created by merging the self
and cross-attention models (Cross+Self). The statistical pooling out-
put from both models were concatenated and fed to a common clas-
sifier module. We can see that the performance is similar to that of
the self-attention model. This might indicate that the cross-attention
model does not contribute any additional, relevant information com-
pared to that of the self-attention model.

4. CONCLUSION

Intrigued by the popularity of cross-attention mechanism in multi-
modal fusion, we compared models based on self-attention and
on cross-attention using the IEMOCAP dataset for tri-modal and
bi-modal 7-class classification. Results show that there is no mean-
ingful difference between the results of the two models. Thus, within
the context of the dataset and architecture we used, we conclude that
cross-attention does not outperform self-attention for multi-modal
emotion recognition. Furthermore, both the self and the cross-
attention models improve the state-of-the-art in the recognition task.
Future work includes investigating the effectiveness of cross and
self-attention models for other multi-modal tasks and modalities.
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