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ABSTRACT

In this paper, we propose a novel clustered multitask diffusion RLS
(MT-DRLS) algorithm over network to further improve the perfor-
mance of its counterpart, the multitask diffusion LMS (MT-DLMS)
algorithm. Its transient behavior is investigated, in the mean and
mean-square error sense. Simulation results illustrate the significant
improvement of the MT-DRLS over the MT-DLMS in terms of con-
vergence rate and steady-state error, as well as the accuracy of the
theoretical findings.

Index Terms— Multitask adaptive learning, diffusion RLS,
transient analysis, distributed estimation, multitask network.

1. INTRODUCTION

During the past decade, distributed detection, estimation, and track-
ing problems have attracted substantial attention in the context of
adaptive networks with diffusion strategies [1–3]. Several multitask
strategies for adaptation and learning over networks have been re-
cently proposed based on the diffusion least-mean-squares (DLMS)
algorithm [4–11]. The DLMS algorithm for multitask networks
was first proposed in [4, 5], and studied in asynchronous networks
in [6]. A new multitask learning formulation using a common latent
representation was presented in [7], as well as a unified frame-
work to analyze its performance. Both `1-norm regularization and
`∞,1-norm regularization were introduced into multitask networks
in [9] and [10], respectively. Recently, the performance of multitask
DLMS algorithm has been analyzed in the presence of communica-
tion delays [11]. An overview of multitask learning over networks
and its applications is available in [12].

The diffusion recursive least-squares (DRLS) algorithm was
also extensively studied in [13–20], due to the superior perfor-
mance of the RLS compared to the LMS [21, 22]. The DRLS
algorithm with incremental update-then-combine diffusion strategy
was initially proposed in [13], with an analysis of its steady-state
performance. The diffusion bias-compensated RLS algorithm was
presented in [14] to reduce residual bias, and the DRLS algorithm
was considered in [15, 19] to reduce communication cost. Variants
of the DRLS algorithm were successively devised to improve the
performance in the context of sparse systems [16], noisy links [17],
and robustness against impulsive interferences [18]. More recently,
a transient analysis of DRLS algorithm was presented in [20]. To the
best of our knowledge, the multitask DRLS algorithm has not been
considered so far except in [23]. This motivates us to derive in this
paper the clustered multitask diffusion RLS (MT-DRLS) algorithm
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with adapt-then-combine (ATC) diffusion strategy. Furthermore, an-
alytical models are derived to characterize its transient behavior in
the mean and mean-square error sense. Simulation results illustrate
the superiority of the MT-DRLS algorithm over the MT-DLMS and
DRLS algorithms. The accuracy of the resulting transient analytical
models is also investigated.

Notation: The matrix trace is denoted by tr{·}. The notation ⊗
denotes Kronecker product. Identity matrix of sizeN×N is denoted
by IN , and 1N denotes an all-one vector of length N . The operator
bdiag{·} formulates a (block) diagonal matrix with its arguments,
and col{·} stacks its vector arguments on the top of each other to
generate a column vector. The notation ‖x‖2Σ denotes the squared
norm of x weighted by any positive semi-definite matrix Σ, i.e.,
‖x‖2Σ = x>Σx. C(k) and C(k)− denote the cluster of nodes to
which node k belongs, including k and excluding k, respectively. Ci
denotes the cluster i, i.e., the index set of nodes in the i-th cluster.

2. NETWORK MODEL AND MT-DRLS ALGORITHM

2.1. Clustered Multitask Network Model

Consider a connected network consisting of K nodes, indexed with
k = 1, . . . ,K. At time instant n ≥ 0, each node k has access to a
random data pair {dk,n,xk,n}, which is assumed to be generated by
an optimal weight vector w?

k ∈ RL at node k via the linear regres-
sion model:

dk,n = x>k,nw?
k + zk,n (1)

where dk,n ∈ R is the zero-mean desired signal, xk,n ∈ RL de-
notes the regression vector with a positive-definite covariance ma-
trix Rx,k = E

{
xk,nx>k,n

}
, and zk,n is a zero-mean temporally and

spatially independent noise with variance σ2
z,k. We assume that all

nodes are grouped into Q clusters, corresponding to Q estimation
tasks. The unknown optimal weight vector w?

k are constrained to be
identical within each cluster, namely, w?

k = w?
Cq for all k ∈ Cq .

However, it is assumed that similarities exist among the neighboring
clusters, i.e., w?

Cp ∼ w?
Cq if Cp and Cq are connected with p 6= q,

where ∼ represents a similarity relationship in some sense. Clusters
Cp and Cq are connected provided that there exists at least one com-
munication link connecting a node from one cluster to a node in the
other cluster.

2.2. Clustered Multitask Diffusion RLS Algorithm

In the context of clustered multitask networks, the objective is to es-
timate the unknown parameter vectors {w?

Cq}
Q
q=1. For each node k

in cluster C(k) and nodes of other clusters that are connected to node
k, we first introduce an intermediate update equation to promote the



similarities of weight vectors between neighboring clusters:

wk,n− 1
2
= wk,n−1 − γ

∑
`∈Nk\C(k)−

ρk` + ρ`k
2

(wk,n−1 −w`,n−1)

(2)
with strength parameter γ ≥ 0 and wk,n−1 denoting the local es-
timate of w?

k. Here, the non-negative weight coefficients ρk` are
chosen to satisfy the conditions [5, 6]:

∑
`∈Nk\C(k)−

ρk` = 1, and


ρk` > 0, if ` ∈ Nk \ C(k),
ρkk ≥ 0,

ρk` = 0, otherwise.
(3)

We collect the above coefficients into the random K × K right-
stochastic matrix Θ with (k, `)-th entry ρk`. Note that the weight
coefficients between pairs of nodes are assumed to be symmetric.

Let ψk,n denote the intermediate estimate of w?
k. Since weight

vector wk,n− 1
2

that considers the similarities of weight vectors be-
tween neighboring clusters is a good guess for the intermediate es-
timate ψk,n as a prior information, we then consider a special case
of local least-squares problem based on the collected data at node k
only for current time instant n as in [18, 20]:

ψk,n = argmin
ψk∈RL

{∥∥ψk −wk,n− 1
2

∥∥2
Λk,n

+
(
dk,n − x>k,nψk

)2}
(4)

with the positive-definite weighting matrix Λk,n and the time-
averaged autocorrelation matrix Φk,n of input data for node k at
time instant n, namely,

Λk,n = Φk,n − xk,nx>k,n, (5)

Φk,n = λΦk,n−1 + xk,nx>k,n, (6)

where 0 � λ < 1 is the forgetting factor, and the initial condition
is Φk,0 = δIL with a small positive value δ. Considering variable
substitutions v = ψk − wk,n− 1

2
and b = dk,n − x>k,nwk,n− 1

2
,

problem (4) can be reformulated as:

v? = argmin
v∈RL

{
v>Λk,nv +

(
b− x>k,nv

)2}
. (7)

Setting the derivative of (7) with respect to v to zero, we obtain:

Φk,nv = bxk,n. (8)

By the definition of v, applying the matrix inversion lemma to the
right hand side (r.h.s.) of (6), then (8) can be rewritten as:

ψk,n = wk,n− 1
2
+ bPk,nxk,n (9)

with the definition Φk,n = P−1
k,n, where the well-known recursion

for matrix Pk,n at node k and time instant n is given by [21, 22]:

Pk,n = λ−1

(
Pk,n−1 −

Pk,n−1xk,nx>k,nPk,n−1

λ+ x>k,nPk,n−1xk,n

)
(10)

with the initial condition Pk,0 = δ−1IL. Specifically, b can be
approximated by estimation error at node k and time instant n, i.e.,

b = dk,n − x>k,nwk,n− 1
2
≈ dk,n − x>k,nwk,n−1 = ek,n. (11)

Substituting (2) and (11) into (9), we arrive at the adaptive update

step of clustered MT-DRLS algorithm:

ψk,n = wk,n−1 + Pk,nxk,nek,n

− γ
∑

`∈Nk\C(k)−

ρk` + ρ`k
2

(wk,n−1 −w`,n−1).
(12)

Let us introduce the entire intermediate estimated vector and the
block column matrix with individual entries the L× L identity ma-
trix, which are defined as follows:

ψn = col{ψ1,n, . . . ,ψK,n} ∈ RKL, (13)

H = col{IL, . . . , IL} ∈ RKL×L. (14)

We consider the final weighted least-squares problem that requires
that each node k communicates with its immediate neighbors within
the same cluster [13, 20]:

wk,n = argmin
w∈RL

{∥∥ψn −Hw
∥∥2

Πk

}
(15)

with the node-dependent weighting block diagonal matrix Πk =
bdiag

{
a1kIL, . . . , aKkIL

}
. Here, the non-negative combination

coefficients {a`k} are chosen to satisfy [5, 6]:

∑
`∈Nk∩C(k)

a`k = 1, and

{
a`k > 0, if ` ∈ Nk ∩ C(k)
a`k = 0, otherwise

(16)

This means that matrix A with (`, k)-th entry a`k is a left-stochastic
matrix, i.e., A>1K = 1K . Likewise, setting the derivative of (15)
with respect to w to zero, the combination step is given by:

wk,n =
∑

`∈Nk∩Ck

a`kψ`,n. (17)

3. TRANSIENT PERFORMANCE ANALYSIS

We now perform the transient performance analysis of MT-DRLS
algorithm with ATC diffusion strategy for clustered multitask net-
works in the mean and mean-square error sense. The weight error
vectors for node k at instant n are defined respectively as follows:

ψ̃k,n , ψk,n −w?
k, w̃k,n , wk,n −w?

k. (18)

Let w̃n and w? denote the block weight error vector and the block
optimal weight vector, all of sizeK×1 with blocks of size L×1, i.e.,

w̃n , col
{
w̃1,n, . . . , w̃K,n

}
, (19)

w? , col
{
w?

1 , . . . ,w
?
K

}
. (20)

We also introduce the following required K × K block diagonal
matrices with each block of size L× L defined as:

Rx,n , bdiag
{
x1,nx>1,n, . . . ,xK,nx>K,n

}
, (21)

Φn , bdiag
{
Φ1,n, . . . ,ΦK,n

}
, (22)

Pn , bdiag
{
P1,n, . . . ,PK,n

}
, (23)

A , A> ⊗ IL, (24)

and the block column vector with individual entries of size L × 1
defined as:

sxz,n , col
{
z1,nx1,n, . . . , zK,nxK,n

}
. (25)



Moreover, it holds that:
E{sxz,n} = 0KL (26)

due to the statistical properties of measurement noise zk,n. Before
proceeding, we introduce the following independence assumption.

Assumption 1. (Independent Regressors): The regression vec-
tors xk,n arise from a stationary random process that is temporally
stationary, temporally white, and spatially independent with the
positive-definite covariance matrix Rx,k.

A consequence of Assumption 1 is that xk,n is independent of
w̃`,m for all ` and m ≤ n. Although not true in general, this as-
sumption is widely used in the theoretical analyzes of adaptive filters
because it allows to simplify the derivations without constraining the
conclusions [21, 22].

3.1. Mean Error Behavior Analysis

With (21) and (22), (6) can be written in the extended form as:

Φn = λΦn−1 + Rx,n. (27)

Taking the expectation of both sides, we obtain:

E{Φn} = λE{Φn−1}+ Rx (28)

where the expectation of input correlation matrix Rx,n is given by:

Rx = E
{
Rx,n

}
= bdiag

{
Rx,1, . . . ,Rx,K

}
∈ RKL×KL. (29)

Since matrix Φn (or Pn) only depends on Rx, hence relation (28)
is very useful in the sequel. In view of (1) and (18), the a priori
estimation error given in (11) can be rewritten as:

ek,n = zk,n − x>k,nw̃k,n−1. (30)

Subtracting w?
k from both sides of (12) and (17), respectively, then

using (18) and (30), we find that:

ψ̃k,n = w̃k,n−1 −Pk,nxk,nx>k,nw̃n−1 + Pk,nxk,nzk,n

+ γ
∑

`∈Nk\C(k)

ρk` + ρ`k
2

(w`,n−1 −wk,n−1), (31)

w̃k,n =
∑

`∈Nk∩Ck

a`kψ̃`,n. (32)

Substituting (31) into (32), and using the above definitions (19)–(21)
and (23)–(25), the update equation of block weight error vector can
be expressed as follows:

w̃n = A
[
w̃n−1−PnRx,nw̃n−1 +Pnsxz,n−γQ(wn−1 +w?)

]
(33)

where

Q =
1

2

[
diag

{(
Θ + Θ>

)
1K

}
−
(
Θ + Θ>

)]
⊗ IL. (34)

Pre-multiplying both sides of (33) by P−1
n A−1, using (27) and the

relation Φn = P−1
n based on the definition Φk,n = P−1

k,n, yields:

ΦnA−1w̃n =
(
λΦn−1 − γΦnQ

)
w̃n−1 − γΦnQ w? + sxz,n.

(35)
The aim of the above manipulations is to separate Pn and Rx,n in
the second term on the r.h.s. of (33). Taking the expectation of both

sides of (35), and utilizing the property (26), we then obtain:

E
{
ΦnA−1w̃n

}
= E

{(
λΦn−1 − γΦnQ

)
w̃n−1

}
− γE{Φn}Q w?.

(36)

In order to make the analysis mathematical tractable, we need the
following approximations [20, 24]:

E
{
ΦnA−1w̃n

}
≈ E{Φn}A−1E{w̃n}, (37)

E
{
Φnw̃n

}
≈ E{Φn}E{w̃n}, (38)

E
{
ΦnQ w̃n−1

}
≈ E{Φn}Q E{w̃n−1}. (39)

The proofs of (37)–(39) are not presented explicitly for saving space,
but the simulation results are able to validate their effectiveness and
rationality later. Substituting the approximations (37)–(39) into (36),
it follows that:

E{Φn}A−1E{w̃n} =
(
λE{Φn−1} − γE{Φn}Q

)
E{w̃n−1}

− γE{Φn}Q w?. (40)

Pre-multiplying both sides of (40) by AE{Φn}−1, it results that

E{w̃n} = A
(
λE{Φn}−1E{Φn−1} − γQ

)
E{w̃n−1}

− γAQ w? (41)

where relation (28) has been used.

3.2. Mean-Square Error Behavior Analysis

The network transient mean-square deviation (MSD) at time instant
n is defined by [1, 2]:

MSDn = tr
{
W̃n

}
/K. (42)

In order to investigate the mean-square error behavior of MT-DRLS
algorithm, our next aim is to determine the update equation of W̃n.

Post-multiplying (35) by its transpose, and taking the expecta-
tion of both sides, leads to:

T0 = λ2T1 + γ2(T2 + T3

)
− γλ

(
T4 + T>4

)
− γλ

(
T5 + T>5

)
+ γ2(T6 + T>6

)
+ Sxz (43)

where
T0 = E

{
ΦnA−1w̃nw̃>n (A−1)>Φn

}
, (44)

T1 = E
{
Φn−1w̃n−1w̃

>
n−1Φn−1

}
, (45)

T2 = E
{
ΦnQ w̃n−1w̃

>
n−1Q

>Φn

}
, (46)

T3 = E
{
ΦnQ w?(w?)>Q>Φn

}
, (47)

T4 = E
{
Φn−1w̃n−1w̃

>
n−1Q

>Φn

}
, (48)

T5 = E
{
Φn−1w̃n−1(w

?)>Q>Φn

}
, (49)

T6 = E
{
ΦnQ w̃n−1(w

?)>Q>Φn

}
, (50)

Sxz = E
{
sxz,ns>xz,n

}
. (51)

For mathematical tractability of analysis, we introduce the following
necessary approximations:

T0 = E
{
ΦnA−1w̃nw̃>n (A−1)>Φn

}
(52)

≈ E{Φn}A−1W̃n(A−1)>E{Φn},



T1 = E
{
Φn−1w̃n−1w̃

>
n−1Φn−1

}
(53)

≈ E{Φn−1}W̃n−1E{Φn−1},

T2 = E
{
ΦnQ w̃n−1w̃

>
n−1Q

>Φn

}
(54)

≈ E{Φn}Q W̃n−1Q
>E{Φn},

T3 = E
{
ΦnQ w?(w?)>Q>Φn

}
(55)

≈ E{Φn}Q w?(w?)>Q>E{Φn},

T4 = E
{
Φn−1w̃n−1w̃

>
n−1Q

>Φn

}
(56)

≈ E{Φn−1}W̃n−1Q
>E{Φn},

T5 = E
{
Φn−1w̃n−1(w

?)>Q>Φn

}
(57)

≈ E{Φn−1}E{w̃n−1}(w?)>Q>E{Φn},

T6 = E
{
ΦnQ w̃n−1(w

?)>Q>Φn

}
(58)

≈ E{Φn}QE{w̃n−1}(w?)>Q>E{Φn}.

The corresponding proofs of (52)–(58) are omitted due to space con-
straints. The effectiveness and rationality can be testified by the sim-
ulation results in the next section. According to assumption 1 and
the statistical property of measurement noise zk,n, the matrix Sxz

can be determined as follows:

Sxz = bdiag
{
σ2
z,1Rx,1, . . . , σ

2
z,KRx,K

}
= ΣzRx (59)

with block diagonal matrix Σz = bdiag
{
σ2
z,1IL, . . . , σ

2
z,KIL

}
.

Substituting (52)–(59) into (43), then multiplying from the left
by AE{Φn}−1 and multiplying from the right by E{Φn}−1A>

simultaneously, we finally arrive at the recursion of W̃n as follows:

W̃n = A
[
λ2E{Φn}−1E{Φn−1}W̃n−1E{Φn−1}E{Φn}−1

+ γ2(Q W̃n−1Q
> + Q w?(w?)>Q>

)
− γλ

(
E{Φn}−1E{Φn−1}W̃n−1Q

>

+ Q W̃>
n−1E{Φn−1}E{Φn}−1) (60)

− γλ
(
E{Φn}−1E{Φn−1}E{w̃n−1}(w?)>Q>

+ Q w?E{w̃n−1}>E{Φn−1}E{Φn}−1)
+ γ2(QE{w̃n−1}(w?)>Q> + Q w?E{w̃n−1}>Q>

)
+ E{Φn}−1ΣzRxE{Φn}−1

]
A>.

It should be pointed out that the above recursive evaluation needs
to employ relation (28). By (60), we can characterize the transient
mean-square errors of the clustered MT-DRLS algorithm.

4. NUMERICAL TESTS

In this section, we provide an illustrative example to show the supe-
rior performance of clustered MT-DRLS algorithm, and to validate
the obtained transient analytical models. We considered a connected
network consisting of 14 nodes grouped into 3 clusters shown in
Fig. 1(a). The optimal weight vectors to be estimated in each clus-
ter were w?

C1 = [0.5196,−0.3667]>, w?
C2 = [0.4952,−0.3783]>,

and w?
C3 = [0.4951,−0.4079]>, respectively. The regression vec-

tors xk,n were zero-mean random vectors governed by a Gaussian
distribution with covariance matrix Rx,k = σx,kIL. The mea-
surement noise zk,n was i.i.d. Gaussian with zero-mean and vari-
ances σ2

z,k. The variances σ2
x,k and σ2

z,k are depicted in Fig. 1

(b), respectively. Each combination coefficient ak` was chosen as
|Nk ∩C(k)|−1 for all ` ∈ (Nk ∩C(k)), where | · | denotes the cardi-
nality of its argument. The regularization weight ρk` was uniformly
chosen as ρk` = |Nk\C(k)|−1 for ` ∈ Nk\C(k), and ρk` = 0 for
any other `. The step-sizes of MT-DLMS algorithm were all set to
0.03. The forgetting factor λ and the initialization parameter δ of
clustered MT-DRLS algorithm were set to 0.995 and 0.05, respec-
tively. All the empirical learning curves were obtained by averaging
over 200 Monte-Carlo runs.

Fig. 1(c) shows that the clustered MT-DRLS algorithms signifi-
cantly outperforms the counterpart clustered MT-DLMS algorithms
in terms of convergence rate, steady-state errors, and parameter es-
timation accuracy. As shown in Fig. 1(c), the MT-DRLS algorithm
with parameter γ = 0.1 gains about 3 dB over the MT-DRLS al-
gorithm with parameter γ = 0 in the steady-state MSD, and needs
about 300 iterations less before attaining the steady-state phase of
MT-DRLS algorithm with parameter γ = 0. More importantly, we
can also see that the consistent agreement between empirical and the-
oretical MSD curves validates the accuracy and effectiveness of the
transient theoretical analysis. Last, this consistency also validates all
the necessary approximations introduced in the analysis.
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Fig. 1. Network setup and simulation results.

5. CONCLUSION

In this paper, we presented the DRLS algorithm with ATC diffu-
sion strategy over clustered multitask networks to improve the per-
formance of clustered MT-DLMS algorithm. We also provided a
transient analysis of the algorithm in the mean and mean-square er-
ror sense. In future works, we will study its steady-state behavior.
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