An End-to-End Deep Learning Speech Coding and Denoising Strategy for Cochlear Implants | IEEE Conference Publication | IEEE Xplore

An End-to-End Deep Learning Speech Coding and Denoising Strategy for Cochlear Implants


Abstract:

Cochlear implant (CI) users struggle to understand speech in noisy conditions. To address this problem, we propose a deep learning speech denoising sound coding strategy ...Show More

Abstract:

Cochlear implant (CI) users struggle to understand speech in noisy conditions. To address this problem, we propose a deep learning speech denoising sound coding strategy that estimates the CI electric stimulation patterns out of the raw audio data captured by the microphone, performing end-to-end CI processing. To estimate the relative denoising performance differences between various approaches, we compared this technique to a classic Wiener filter and to a convTasNet. Speech enhancement performance was assessed by means of signal-to-noise-ratio improvement and the short-time objective speech intelligibility measure. Additionally, 5 CI users were evaluated for speech intelligibility in noise to assess the potential benefits of each algorithm. Our results show that the proposed method is capable of replacing a CI sound coding strategy while preserving its general use for every listener and performing speech enhancement in noisy environments, without sacrificing algorithmic latency.
Date of Conference: 23-27 May 2022
Date Added to IEEE Xplore: 27 April 2022
ISBN Information:

ISSN Information:

Conference Location: Singapore, Singapore

Funding Agency:


Contact IEEE to Subscribe

References

References is not available for this document.