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ABSTRACT

Federated learning (FL) is an emerging machine learning

method that can be applied in mobile edge systems, in which

a server and a host of clients collaboratively train a statistical

model utilizing the data and computation resources of the

clients without directly exposing their privacy-sensitive data.

We show that running stochastic gradient descent (SGD) in

such a setting can be viewed as adding a momentum-like term

to the global aggregation process. Based on this finding, we

further analyze the convergence rate of a federated learning

system by accounting for the effects of parameter staleness

and communication resources. These results advance the un-

derstanding of the Federated SGD algorithm, and also forges

a link between staleness analysis and federated computing

systems, which can be useful for systems designers.

Index Terms— Federated learning, stochastic gradient

descent (SGD), momentum, convergence rate.

1. INTRODUCTION

Federated learning (FL) is a branch of machine learning mod-

els that allow a computing unit, i.e., an edge server, to train a

statistical model from data stored on a swarm of end-user en-

tities, i.e., the clients, without directly accessing the clients’

local datasets [1]. Specifically, instead of aggregating all the

data to the server for training, FL brings the machine learning

models directly to the clients for local computing, where only

the resulting parameters are uploaded to the server for global

aggregation, after which an improved model is sent back to

the clients for another round of local training [2]. Such a

training process usually converges after sufficient rounds of

parameter exchanges and computing among the server and

clients, upon which all the participants can benefit from a bet-

ter machine learning model [3–5]. As a result, the salient fea-

ture of on-device training mitigates many of the systemic pri-

vacy risks as well as communication overheads, hence mak-

ing FL particularly relevant for next-generation mobile net-
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works [6–8]. Nonetheless, in the setting of FL, the server

usually needs to link up a massive number of clients via a

resource-limited medium, e.g., the spectrum, and hence only

a limited number of the clients can be selected to participate in

the federated training during each round of iteration [9–12].

This, together with the fact that the time spent on transmit-

ting the parameters can be orders of magnitude higher than

that of local computations [13, 14], makes the straggler is-

sue a serious one in FL. To that end, a simple but effective

approach has been proposed [15], i.e., reusing the outdated

parameters in the global aggregation stage so as to accelerate

the training efficiency. The gain of this scheme has been am-

ply demonstrated via experiments while the intrinsic rationale

behind it remains unclear. In this paper, we take the stochastic

gradient descent (SGD)-based FL training as an example and

show that reusing the outdated parameters implicitly intro-

duces a momentum-like term in the global updating process,

and prove the subsequent convergence rate of federated com-

puting. This result advances the understanding of FL and may

be useful to guide further research in this area.

2. SYSTEM MODEL

Let us consider an FL system consisting of one server and K
clients, as depicted per Fig. 1, whereK is usually a large num-

ber. Each client k has a local dataset Dk = {xi ∈ R
d, yi ∈

R}nk

i=1 with size |Dk| = nk, and we assume the local datasets

are statistically independent across the clients. The goal of

the server and clients is to jointly learn a statistical model

over the datasets residing on all the clients without sacrificing

their privacy. To be more concrete, the server aims to fit a

vector w ∈ R
d so as to minimize the following loss function

without having explicit knowledge of D = ∪K
k=1Dk:

min
w∈Rd

f(w) =
1

n

n∑

i=1

ℓ(w;xi, yi)

=
nk

n
· 1

nk

nk∑

j=1

ℓ(w;xj , yj)

=

K∑

k=1

pkfk(w) (1)
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Fig. 1. An illustration of Federated SGD training: (A) clients

leverage their local datasets to evaluate the gradient term, (B)

the server aggregates the received updates to produce a new

global model, (C) the new model is sent back to the clients,

and the process is repeated.

where n =
∑K

k=1 nk, pk = nk/n, ℓ(·) is the loss function as-

signed on each data point, and fk(w) =
∑nk

j=1 ℓ(w;xj , yj)/nk

is the local empirical loss function of client k.

Because the server has no direct access to the individual

datasets, the model training needs to be carried out by the

clients in a federated fashion. In this paper, we adopt Fed-

erated SGD, a widely used mechanism, for this task. The

details are summarized in Algorithm 1 [2]. Specifically, at

iteration t, the server needs to send the global model wt to

a subset of clients St, where in general N = |St| ≪ K be-

cause the limited communication resources cannot support si-

multaneous transmissions from a vast number of clients [9],

for on-device model training. Upon receivingwt, the selected

clients will leverage it to evaluate the gradient of the local em-

pirical loss – by means of an H-step estimation – and upload

the estimated gradients g
t
k, k ∈ St. In essence, this com-

prises computing the stochastic gradient with a batch size of

H data points. Finally, the server aggregates the collected

parameters to produce a new output per (4). Such an orches-

tration amongst the server and clients repeats for a sufficient

number of communication rounds until the learning process

converges.

It is worth noting that the gradient aggregation step (3)

in Algorithm 1 utilizes not only the fresh updates collected

from the selected clients but also the outdated gradients from

the unselected ones. As will be shown later, this procedure,

in essence, induces an implicit momentum into the learning

process.

3. ANALYSIS

This section comprises the main technical part of this paper,

in which we analytically characterize the updating process of

global parameters and derive the convergence rate of the Fed-

Algorithm 1 Federated SGD Algorithm

1: Parameters: H = number of local steps per communica-

tion round, η = step size for stochastic gradient descent

2: Initialize: w0 ∈ R
d

3: for t = 0, 1, 2, ..., T − 1 do

4: The server randomly selects a set St of N clients and

broadcasts the global parameter wt to them

5: for each client k ∈ St in parallel do

6: Initialize g
t,0
k = 0

7: for s = 0 to H − 1 do

8: Sample i ∈ Dk uniformly at random, and up-

date the local estimation of the gradient, g
t,s
k , as follows:

g
t,s+1
k = g

t,s
k +∇ℓ(wt;xi, yi) (2)

9: Set gt
k = g

t,H
k /H and send the parameter back to

the server

10: The server collects all the updates of {gt
i}i∈St

and as-

signs gt
j = g

t−1
j for all j 6= St. Then, the server updates

both the estimation of gradient gt and parameter wt+1 as

follows:

g
t =

K∑

k=1

nk

n
g
t
k, (3)

w
t+1 = w

t − ηgt (4)

11: Output: wT

erated SGD algorithm.

3.1. Update Process of Global Parameters

Due to limited communication resources, the server can only

select a subset of the clients to conduct local computing and

update their gradients in every round of global iteration. As

a result, the gradients of the unselected clients become stale.

In accordance with (3) and (4), after the t-th communication

round, the update of global parameters at the server side can

be rewritten as follows:

w
t+1 = w

t − η

K∑

k=1

pk g
t−τk
k (5)

in which τk is the staleness of the parameters corresponding

to the k-th client. Because the clients to participate in the

FL are selected uniformly at random in each communication

round, the staleness of parameters, {τk}Kk=1, can be abstracted

as independently and identically distributed (i.i.d.) random

variables with each following a geometric distribution:

P(τk = l) = βl(1− β), l = 0, 1, 2, ... (6)

where β = 1−N/K .

These considerations bring us to our first result.



Lemma 1. Under the depicted FL framework, the parameter

updating process constitutes the following relationship:

E
[
w

t+1−w
t
]
=β E

[
w

t−w
t−1

]
−(1−β)ηE

[
g
t
]
. (7)

Proof. Using (5), we can subtract wt from w
t+1 and obtain

the following:

w
t+1−w

t = w
t−w

t−1 −η

K∑

k=1

pk
(
g
t−τk
k − g

t−τk−1
k

)
.

(8)

By taking an expectation with respect to the staleness τk,

k ∈ {1, · · · ,K} on both sides of the above equation, the

following holds:

E[wt+1 −w
t] = E[wt −w

t−1]

− η
K∑

k=1

pk E
[
g
t−τk
k − g

t−τk−1
k

]

︸ ︷︷ ︸

Q1

. (9)

Since τk ∼ Geo(1− β), we can calculate Q1 as

Q1 =
(
1− β

)
E
[
g
t
k

]
+

∞∑

l=1

(1− β)βl
E
[
g
t−l−1
k

]

−
∞∑

l=0

(1− β)βl
E
[
g
t−l−1
k

]

=
(
1− β

)
E
[
g
t
k

]
−

∞∑

l=0

(1−β)2βl
E
[
g
t−l−1
k

]
. (10)

Furthermore, by noticing that for the stochastic gradient of

each client k, the following result holds:

E
[
g
t−τk−1
k

]
=

∞∑

l=0

(1− β)βl
E
[
g
t−l−1
k

]
, (11)

we have

η
K∑

k=1

pk E
[
g
t−τk
k − g

t−τk−1
k

]

=
(
1−β

)
η

K∑

k=1

pkE
[
g
t
k

]

−
(
1−β

)
η

K∑

k=1

pk

∞∑

l=0

(1−β)βl
E
[
g
t−l−1
k

]

=
(
1−β

)
η E

[
g
t
]
−
(
1−β

)
η

K∑

k=1

pkE
[
g
t−τk−1
k

]

(a)
=

(
1−β

)
η E

[
g
t
]
+
(
1−β

)
E
[
w

t−w
t−1

]
, (12)

where (a) follows from (5). Finally, by substituting (12) into

(9), we complete the proof.

From Lemma 1, we can identify a momentum-like term,

namely βE[wt−w
t−1], when the global parameter is updated

fromw
t to w

t+1. This can mainly be attributed to the reuse of

gradients, which introduces memory during the global aggre-

gation step and makes the parameter vector wt+1 stay close

to the current server model wt. Notably, such a phenomenon

is also observable in the context of completely asynchronized

SGD algorithms owing to similar reasons [16]. As a result,

Lemma 1 can serve as a useful reference to adjust the control-

ing factor if one intends to accelerate the Federated SGD algo-

rithm by running it in conjunction with an explicit momentum

term [16–18]. Besides, if the delayed gradient averaging such

as [19] is employed, the design of gradient correction shall

take into account the effect of such an implicit momentum as

well.

In the sequel, we quantify the effect of this implicit mo-

mentum on the convergence performance of the FL system.

3.2. Convergence Analysis

To facilitate the analysis of the FL convergence rate, we make

the following assumption on the structure of the global em-

pirical loss function.

Assumption 1. The gradient of each fk is Lipschitz contin-

uous with a constant L > 0, i.e., for any w,v ∈ R
d the

following is satisfied:

‖∇fk(w)−∇fk(v)‖ ≤ L‖w− v‖. (13)

This assumption is standard in the machine learning litera-

ture and is satisfied by a wide range of machine learning mod-

els, such as SVM, logistic regression, and neural networks.

Besides, no assumption regarding the convexity of the objec-

tive function is made. We further leverage a notion, termed

gradient coherence, to track the variant of the gradient during

the training process, defined as follows [20].

Definition 1. The gradient coherence at communication

round t is defined as

µt = min
0≤s≤t

〈∇f(ws),∇f(wt) 〉
‖∇f(ws)‖2 . (14)

The gradient coherence characterizes the largest deviation

of directions between the current gradient and the gradients

along the past iterations. As such, if µt is positive, then the

direction of the current gradient is well aligned to those of the

previous ones, and hence reusing the trained parameters can

push forward the global parameter vector toward the optimal

point.

Theorem 1. Suppose the gradient coherence µt is lower

bounded by some µ > 0 for all t and the variance of the

stochastic gradient is upper bounded by σ2 > 0. If we choose

the step size to be η = 1/
√
LT , then after T rounds of



communication, the Alg. 1 converges as follows:

min
0≤t≤T−1

E
[
‖∇f(wt)‖2

]
≤ 2

√
L
[
f(w0)− f(w∗) + σ2

]

[
1− (1− µ)β

]√
T

(15)

in which w
∗ = argmin

w∈Rd f(w).

Proof. Following Assumption 1, we know that the empirical

loss function f(·) is L-smooth, and hence after the t-th round

of global parameter update the following holds:

E
[
f(wt+1)

]
≤ E

[
f(wt)

]
+ E

[
〈wt+1 −w

t,∇f(wt) 〉
]

︸ ︷︷ ︸

Q1

+
L

2
E
[
‖wt+1 −w

t‖2
]

︸ ︷︷ ︸

Q2

. (16)

Using Lemma 1, we can expand the terms in Q1 and obtain

the following:

Q1
(8)
= E

[
〈β(wt −w

t−1)− η(1 − β)gt,∇f(wt) 〉
]

(a)
= βE

[
〈wt −w

t−1,∇f(wt) 〉
]
− η(1 − β)E

[
‖∇f(wt)‖2

]

(b)
=−ηβE

[
〈∇f(wt−τ−1),∇f(wt) 〉

]
−η(1−β)E

[
‖∇f(wt)‖2

]

≤ −ηβµE
[
‖∇f(wt)‖2

]
− η(1− β)E

[
‖∇f(wt)‖2

]

= −η
[
1− (1− µ)β

]
E
[
‖∇f(wt)‖2

]
(17)

where (a) follows by noticing that E[gt] = ∇f(wt) and in

(b) we notice that all the random variables {τk}Kk=1 possess

the same distribution and hence unify them by introducing a

random variable τ that satisfies τ = τk in distribution. On the

other hand, as the stochastic gradient has a bounded variance,

Q2 can be evaluated as

Q2 = E

[∥
∥η

K∑

k=1

pkg
t−τk
k

∥
∥
2
]

= η2E
[∥
∥

K∑

k=1

pkg
t−τk
k −∇f(wt) +∇f(wt)

∥
∥
2
]

≤ 2η2
(
E
[
‖∇f(wt)‖2

]
+ σ2

)
. (18)

By taking (17) and (18) back into (16) and telescoping t
from 0 to T − 1, we have

E[f(wT−1)]− E[f(w0)] ≤ L

T−1∑

t=0

η2E
[
‖∇f(wt)‖2

]

+

T−1∑

t=0

Lη2σ2−
(
1−(1−µ)β

)
T−1∑

t=0

η E
[
‖∇f(wt)‖2

]
. (19)

Further rearranging the terms of the above inequality

yields

T−1∑

t=0

[(
1− (1− µ)β

)
η − Lη2

]
E
[
‖f(wt)‖2

]

≤ f(w0)− E
[
f(wT−1)

]
+ Lσ2

T∑

t=1

η2. (20)

Note that E[f(wT )] ≥ f(w∗) and η = 1/
√
LT , and so we

have

min
0≤t≤T−1

E
[
‖∇f(wt)‖2

]
≤ f(w0)− f(w∗) + Lσ2

∑T−1
t=1 η2

∑T−1
t=0

[(
1− (1− µ)β

)
η − Lη2

]

=
f(w0)− f(w∗) + σ2

(
1− (1 − µ)β

)√

T/L− 1
. (21)

Finally, when T is taken to be sufficiently large, we have

(
1− (1− µ)β

)√

T/L− 1 ≥
(
1− (1− µ)β

)√
T

2
√
L

(22)

and the result follows.

Following Theorem 1, several observations can be made:

(i) For non-convex objective functions, Federated SGD con-

verges to stationary points on the order of 1/
√
T ; (ii) the stal-

eness of parameters impacts the convergence rate via the mul-

tiplicative constant, which unveils that when the communica-

tion resources are abundant, i.e., the server can select many

clients for parameter updates in each iteration, that leads to

an increase in N which in turns reduces β and results in a

faster convergence rate, and vice versa; and (iii) this result

also provides further evidence to the claim that having more

clients participate in each round of FL training is instrumental

in speeding up the model convergence [21, 22].1

4. CONCLUSION

In this paper, we have carried out an analytical study toward

a deeper understanding of the FL system. For the Federated

SGD algorithm that uses both fresh and outdated gradients in

the aggregation stage, we have shown that this implicitly in-

troduces a momentum-like term during the update of global

parameters. We have also analyzed the convergence rate of

such an algorithm by taking into account the parameter stal-

eness and communication resources. Our results have con-

firmed that increasing the number of selected clients in each

communication round can accelerate the convergence of the

FL algorithm through a reduction in the staleness of parame-

ters. The analysis does not assume convexity of the objective

function and hence is applicable to even the setting of deep

learning systems. The developed framework reveals a link

between staleness analysis and FL convergence rate, and may

be useful for further research in this area.

1A few simulation examples that corroborate these observations

are available in: https://person.zju.edu.cn/person/attachments/2022-01/01-

1641711371-850767.pdf
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