
MULTI-CHANNEL SPEECH DENOISING FOR MACHINE EARS

Cong Han1,2∗ , E. Merve Kaya1, Kyle Hoefer1, Malcolm Slaney1,3, Simon Carlile1

1 X, Mountain View, CA, USA
2 Department of Electrical Engineering, Columbia University, NY, USA

3 Google Research, Mountain View, CA, USA

ABSTRACT

This work describes a speech denoising system for machine ears that
aims to improve speech intelligibility and the overall listening expe-
rience in noisy environments. We recorded approximately 100 hours
of audio data with reverberation and moderate environmental noise
using a pair of microphone arrays placed around each of the two
ears and then mixed sound recordings to simulate adverse acoustic
scenes. Then, we trained a multi-channel speech denoising network
(MCSDN) on the mixture of recordings. To improve the training, we
employ an unsupervised method, complex angular central Gaussian
mixture model (cACGMM), to acquire cleaner speech from noisy
recordings to serve as the learning target. We propose a MCSDN-
Beamforming-MCSDN framework in the inference stage. The re-
sults of the subjective evaluation show that the cACGMM improves
the training data, resulting in better noise reduction and user prefer-
ence, and the entire system improves the intelligibility and listening
experience in noisy situations.
Index Terms: speech denoising, hearing devices, beamformer

1. INTRODUCTION

Removing noise from speech signals is a good way to improve a
user’s experiences in noisy environments. New hardware allows for
multiple microphones near the ear and the processing power to learn
from these signals, which can deliver a better auditory experience.
This work describes a system for denoising speech signals captured
by a pair of microphone arrays near the ears under noisy condi-
tions. We capitalize on deep neural network (DNN) architectures
for speech enhancement, along with multi-channel beamforming.

DNN training requires a large quantity of realistic training data.
For speech enhancement, the labeled data is a pair of noisy and clean
speech signals. One can create arbitrary amounts of noisy data by
adding reverberation and noise; however there is still a mismatch be-
tween simulated noisy mixtures and real-world audio due to the com-
plex acoustics of real environments. This could degrade the DNN’s
performance when it is applied to real-world data.

In this work we instead measured a large quantity of speech and
noise signals in a real room, and create mixtures from these record-
ings. This is good for realism but also includes room tone. An im-
portant part of this work is a method for preprocessing the recorded
sound to remove this background noise so that it can be used as
ground truth. We demonstrate improvements in noise reduction and
listening preference due to the preprocessing.

The rest of the paper is organized as follows. We review related
work in Section 2 and introduce our method in Section 3. We de-
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scribe the experiment configurations in Section 4, analyze the results
in Section 5, and conclude the paper in Section 6.

2. RELATED WORK

Speech enhancement has been actively studied for decades [1–4].
In recent years, deep neural networks have greatly advanced speech
enhancement using both supervised [5–7] and unsupervised meth-
ods [8–12]. Supervised methods have achieved overwhelming per-
formance, but they require access to ground-truth signals, and thus
they can degrade on real recordings which are mismatched with the
simulated data used for training. Unsupervised methods overcome
these problems by requiring only the noisy speech signals.

A general category of unsupervised approaches utilizes spatial
information to cluster sound sources in space [8–11]. The posterior
cluster labels can be used as masks to isolate the target speech. An
approach using the complex angular-central Gaussian mixture model
(cACGMM) [9] clusters the signals, and the resulting labels are used
as pseudo-target to train a deep clustering model [13].

This paper employs cACGMM to extract cleaner speech signals
from the recordings to serve as the training target. Our motivation
is that we can easily collect moderately noisy recordings without
access to ground-truth signals in real scenarios, which can be well
processed by the unsupervised clustering methods. Then, we mix
several recordings into a much noisier mixture and take advantage
of supervised learning to predict the clean speech signals from the
mixture. The difference compared to prior work is that we do not
apply the clustering model to the noisy mixture directly, because the
clustering-based methods perform poorly in challenging conditions
where spatial features are smeared by room reverberance and strong
background noise, especially diffuse noise with no distinct direc-
tional features.

Using a DNN to predict the masks that estimate the spatial co-
variance, which steers the beamformer toward the target signal, is a
popular method to combine DNNs and conventional beamforming
methods [14–16]. The linear beamformers effectively keep speech
free of nonlinear distortion, which is essential for good perceptual
quality of speech in communication. However, the linear beam-
former cannot cancel all interference, especially those close in space
to the speech source. To reduce the residual noise, the beamform-
ing output can be filtered by the mask used for beamforming [14] or
can be processed by a new post enhancement neural network [17]
or even more iterations of neural network and beamforming [18].
However, adding a new neural network increases the size of the sys-
tem, which is undesired for its deployment on hardware with limited
capacities, such as hearing aids. In this paper, we employ the exact
same multi-channel DNN to predict masks for both the estimation of
beamformer weights and post enhancement.
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Fig. 1. Overview of the speech denoising system. (A) The training stage, and (B) the inference stage. Blue blocks denote the same multi-
channel speech denoising network. MVDR is a minimum variance distortionless response beamformer.

3. METHOD

Figure 1 shows an overview of the proposed method for training
and inference. During training we use cACGMM to generate a
better target to train a conventional multi-channel speech denois-
ing network (MCSDN). In inference, we first apply the pretrained
MCSDN, beamforming, and the same MCSDN sequentially. The
final denoised signal is a weighted linear combination of the second
MCSDN output and the beamforming result.

3.1. Complex angular central Gaussian mixture model

Give an M-channel recording S ∈ RM×T×F in the short-time
Fourier transform (STFT) domain, where T and F denote the time
frame and frequency bin, respectively, we use the complex angu-
lar central Gaussian mixture model (cACGMM) [19] to isolate the
speech source Ŝ ∈ RM×T×F and remove noisy sources from un-
wanted directions. cACGMM models the directional observations
Zt,f =

St,f

||St,f ||
with a Gaussian mixture model,

p(Zt,f ; Θf ) =

K∑
k=1

αk
fA(Zt,f ; Bk

f ), (1)

where Θf = {αk
f ,B

k
f∀k} denotes the model parameters, {αk

f∀k}
is a set of k mixture weights, which are probabilities that sum to
1. A(st,f ; Bk

f ), a complex angular central Gaussian distribution
(cACG) [20], models the distribution of Zt,f for the component k
in the mixture model as follows:

Fig. 2. The cACGMM extracts a cleaner speech (right) signal from
the recording (left) as the training target. The red rectangle high-
lights an instance where the background noise is attenuated.

A(Zt,f ; Bk
f ) =

(M − 1)!

2πMdet(Bk
f )

1

(ZH
t,f (Bk

f )−1Zt,f )M
. (2)

We estimate the parameters Θf with the expectation-maximization
(EM) algorithm. The posterior probability of Zt,f belonging to class
k is:

Γk
t,f =

αk
fA(Zt,f ; Bk

f )∑K
k=1 α

k
fA(Zt,f ; Bk

f )
. (3)

Since cACGMM models each frequency independently, there
can be a frequency permutation problem [21], i.e., the same index
k in different frequency bins point to different sources. This prob-
lem is addressed by permutation alignment [21]. Finally, we use Γs

as the mask to extract speech,

Ŝ = S� Γs, (4)

where the superscript s indicates the speech, and� denotes element-
wise multiplication.

3.2. MCSDN-Beamforming-MCSDN framework

We train a multi-channel speech denoising network (MCSDN) based
on the temporal convolutional network (TCN) [22] in Conv-TasNet
[23] to predict a time-frequency mask Ms ∈ RT×F for the target
Ŝ from the multi-channel noisy signal Y ∈ CM×T×F . In order to
exploit both the spectro-temporal and spatial information, we con-
catenate the log power spectrogram of the reference channel signal
and inter-channel phase differences (IPDs) between the reference
channel and other channels as input features, since IPDs indicate
which T -F bins belong to the same directional source in each fre-
quency band. Specifically, we calculate sin(IPD) and cos(IPD) as
inter-channel features [24, 25]. The training objective is defined as:

L = |Y �Ms − Ŝ|. (5)

We use the estimated mask Ms from the MCSDN for mask-
based beamforming. We employ minimum variance distortionless
response (MVDR) beamforming [26], which is optimized with a
constraint that minimizes the power of the noise without distorting
the target speech. One solution is:

wf =
(Φn

f )−1Φs
f

Trace((Φn
f )−1Φs

f )
u, (6)

where Φn
f and Φs

f are the covariance matrices of the speech and



noise, respectively:

Φs
f =

1∑
t Ms

t,f

∑
t

Ms
t,fYt,fYH

t,f , (7)

Φn
f =

1∑
t (1−Ms

t,f )

∑
t

(1−Ms
t,f )Yt,fYH

t,f , (8)

and u is a one-hot vector indicating the reference channel. H denotes
conjugate transposition. Then, the linear filter wf ∈ CM is applied
to Yt,f ∈ CM to generate the beamforming output BFt,f :

BFt,f = wH
f Yt,f . (9)

Next, we use the trained MCSDN to denoise the beamforming
output. To extend the single-channel beamforming output to a multi-
channel one, BF ∈ CM×T×F , we stack the beamforming output on
each channel [BF1,BF2, . . . ,BFm] by shifting the one-hot vector
u in Equation 6 without introducing any new computation. Finally,
the MCSDN takes BF as input and estimates a speech mask M̂

s ∈
RT×F to further denoise the beamforming output:

S = M̂
s �BF. (10)

We can view the pipeline in this way: the first time-frequency mask
Ms is for mask-based beamforming that results in a less noisy mix-
ture, then the second mask M̂

s
is to extract the speech from the less

noisy signal. However, using the spectral mask estimated by neural
networks to extract speech will inevitably cause non-linear speech
distortion, which is undesirable for human listeners. We balance the
noise reduction and speech distortion by mixing the beamforming
output and the neural network output using a gate α ∈ [0, 1],

S̃ = α ·BF + (1− α) · S. (11)

4. EXPERIMENT CONFIGURATIONS

4.1. Data collection

We recorded a collection of in-room speech and ambient sound sam-
ples to be used to generate sound mixtures. Each sample captures
the real room acoustics, including reverb and background noise. The
recording room has the dimensions 7.5 (length) x 3.5 (width) x 3
(height) meters (T60 ≈ 0.37s). A Bruel and Kjaer Type 4128-C
Head and Torso Simulator (HATS) is placed in the center of the room
on a motorized turntable, which sits atop a wooden table that spans
the majority of the room length-wise. For this experiment, we used
two proprietary arrays of 16 microphones, one placed around each of
the two ears. Surrounding the HATS are six Genelec 8020D 4” pow-
ered studio monitors for audio source playback. All speakers face
towards the HATS. The speakers are placed at azimuth values rang-
ing from 0 to 360°, and the distance from the HATS and elevation
from the ground values ranges among 1, 2, or 3 meters. Once placed,
the speaker locations are fixed and do not change for the given room.

Playback source data consists of the sound clips from FSD50K
[27] (∼50h and 11h from training and test sets) and LibriSpeech
[28] (∼40h and 11h from training and test sets). We resampled the
playback data to 48 kHz, and pre-processsed to trim silence from the
beginning and end of each clip. We manually normalized the ound
clips so that the clip’s db SPL at the speaker is as close as possible
to a real-world example for that sound class. The target db SPL
values for each sound class have a random variance of ±5 db SPL.
We played each sound clip through a speaker assigned at random,

and recorded through the microphone arrays at 48 kHz with 32-bit
floating point precision.

4.2. Acoustic scene generation

For the training and development sets, we generated 12,000 and
4,000 9-second mixtures, respectively. For each mixture, we ran-
domly draw one speech recording and three distractor recordings
from the in-room recordings and mix them to simulate challenging
environments. We excluded the following broad class labels from
FSD50K: speech, alarm, domestic animal sounds, domestic sounds
(faucet, cutlery, drawers, etc.). A clip of ambient noise recorded in
the room without loudspeakers playing is also added into the mix-
ture. The overall SNR of the mixture with respect to the speech
recording varies between -3 dB and -30 dB. We resampled mixtures
to 16 kHz.

4.3. Networks

We adopt the TCN module in Conv-TasNet [23] with STFT as the
encoder, iSTFT as the decoder, and use 4 repeated stacks each hav-
ing 6 1-D convolutional blocks in the masking network. STFTs are
computed with a window size of 32 ms and a hop size of 8 ms. The
effective receptive field of the model is approximately 4 s. For com-
putational efficiency, only 8 of the channels (4 from each array) were
used to train the MCSDN.

4.4. Evaluation

We performed two subjective evaluations: one to measure the lis-
tening improvement, and the second to evaluate the importance of
cACGMM in the training. We recruited 60 self-reported normal-
hearing subjects who are native English speakers to participate in a
listening test on Amazon Mechanical Turk [29]. Subjects were in-
structed to wear headphones or earphones during the test.

The test is a simplified version of multiple stimuli with hid-
den reference and anchor (MUSHRA) [30]. We use 10 sets of
male speaker samples and 10 sets of female speaker samples for
the test. When evaluating each set of sounds, the subjects are in-
structed to listen to a 9-second unprocessed noisy speech sample
first, and then listen to and rate the processed speech without know-
ing which algorithm had been applied. The processed speech came
from 1) MCSDN, 2) MCSDN-Beamforming (mask-based MVDR
beamforming), 3) MCSDN-Beamforming-MCSDN, 4) the re-mixed
one with 20% from the beamforming and 80% from the second
MCSDN, and 5) the target speech signal from cACGMM as shown
in Equation 4. The subjects rate each processed speech sample on a
scale with the following labels: bad (1), poor (2), fair (3), good (4),
and excellent (5) on the following four aspects:

(a) Intelligibility: How well can you recognize what the speaker
is saying?

(b) Noise reduction level: How much of the noise is removed
compared to the unprocessed speech?

(c) Free of distortion: How distortionless is the speech signal?

(d) Listening improvement: How much the processed signal im-
proves listening compared to the unprocessed one, e.g., how
much would you like to use such a device to help them im-
prove listening?

Similar to MUSHRA, we used the speech signals from cACGMM
as a hidden reference that were used to disqualify subjects who
gave low-intelligibility and noise-reduction scores. Because the
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Fig. 3. Subjective evaluation results shown as boxplots. Pseudo-target (from cACGMM) is the training target of MCSDN. The red line
represents the median (all the ratings are discrete numbers from 1 to 5, so the median is discrete). The number in white denotes the mean.

hidden reference signals were processed from individual recordings,
they contained almost no noise and should have good intelligibility
scores. Then, the ratings for a set of signals from a subject were
disqualified and dropped if the sum of intelligibility and noise reduc-
tion scores for the hidden reference is lower than the bottom 15% of
this summation from all subjects.

The setup for the second (cACGMM) experiment was similar to
the first experiment. We provided two re-mix models with the MCS-
DNs trained with and without cACGMM, respectively, and asked the
subjects to rate them for noise reduction and listening improvement.

5. RESULTS AND DISCUSSIONS

Figure 3 compares different models in terms of the factors described
above. First, all models improve the average intelligibility score over
the unprocessed mixture. We notice some subjects gave high intel-
ligibility scores to some of the unprocessed signals even when they
had low SNRs. We think this is because humans can attend to a
source in the presence of multiple distracting stimuli thanks to the
cocktail party effect [31], thus they may focus on and exert them-
selves to understand the target speech. But overall, the strong back-
ground noise makes the speech much less intelligible. While the
MCSDN has a high score for noise reduction due to the power of
nonlinear models, it can cause speech distortion. If the mixture is
too noisy, the model may also filter out speech components when it
removes the noise. Therefore, the MCSDN only provides a slight
intelligibility improvement and poor listening improvement.

The MVDR beamformer uses linear filters to avoid distortion,
which sacrifices the ability to cancel some noise. So, it has a lower
noise-reduction score but a higher “free of distortion” score. The
intelligibility and listening improvement are better than those for
MCSDN.

The second MCSDN, following the beamformer, reduces the
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Fig. 4. Comparison between the re-mix model using DNNs trained
with cACGMM and without cACGMM.

residual noise noticeably but still lifts speech distortion slightly. It
does not affect intelligibility and achieves slightly better listening
improvement than beamforming. All metrics at the output of the
second MCSDN are significantly better than the first MCSDN.

When 20% of the beamforming output and 80% of the second
MCSDN output are mixed as a new signal, we see it improves the
intelligibility score over other models and achieves the best listening
improvement. Some subjects mentioned they felt comfortable when
the sound contained a little background noise. One explanation is
that it is more realistic than over-denoised sound. Moreover, the
beamforming output can mask the distorted components introduced
by the neural networks.

The cACGMM target output achieves the highest mean scores
in all aspects. This is expected because it is processed from moder-
ately noisy recordings while the models’ outputs are processed from
much noisier mixtures. Here, cACGMM is shown to be able to pro-
duce good quality signals to serve as the training target for MCSDN.
More than 75% of the intelligibility, noise reduction, and overall lis-
tening improvement scores have a rating of at least 4. We notice the
score for “free of distortion” is lower, perhaps because cACGMM
estimates a probabilistic time-frequency mask through spatial clus-
tering, which may introduce nonlinear distortion.

Figure 4 compares the output of the full re-mix model when the
DNNs are trained with and without the cACGMM. We see the model
trained using the cleaner target speech provided by cACGMM results
in better noise reduction and thus better listening improvement. This
demonstrates that cACGMM can help improve the quality of training
data coming from real recordings.

6. CONCLUSION

This paper investigates a speech denoising system using real record-
ing data to mitigate the data mismatch problem. For training, we
mixed individual recordings with reverberation and moderate noise
into a mixture with multiple distractors. Instead of using speech
recordings as the learning target, we applied cACGMM on individ-
ual recordings to extract clean speech signals to serve as the target
for learning, which significantly improve the training dataset. For in-
ference, we propose an MCSDN-Beamforming-MCSDN framework
to take advantage of multiple microphones and balance the speech
distortion and noise reduction. Subjective evaluation experiments
show that this speech denoising system reduces background noise,
improves speech intelligibility, and thus improves human listening.
Future work includes alleviating the performance degradation from
strong reverberation and tailoring the model to fit into hearing aids
with low power resources.
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