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ABSTRACT

As an effective method for intellectual property (IP) protec-
tion, model watermarking technology has been applied on a
wide variety of deep neural networks (DNN), including speech
classification models. However, how to design a black-box
watermarking scheme for automatic speech recognition (ASR)
models is still an unsolved problem, which is a significant
demand for protecting remote ASR Application Programming
Interface (API) deployed in cloud servers. Due to conditional
independence assumption and label-detection-based evasion
attack risk of ASR models, the black-box model watermarking
scheme for speech classification models cannot apply to ASR
models. In this paper, we propose the first black-box model
watermarking framework for protecting the IP of ASR mod-
els. Specifically, we synthesize trigger audios by spreading
the speech clips of model owners over the entire input audios
and labeling the trigger audios with the stego texts, which
hides the authorship information with linguistic steganography.
Experiments on the state-of-the-art open-source ASR system
DeepSpeech demonstrate the feasibility of the proposed water-
marking scheme, which is robust against five kinds of attacks
and has little impact on accuracy.

Index Terms— Automatic speech recognition, intellectual
property protection, black-box watermarking

1. INTRODUCTION

In recent years, deep learning technologies have shown great
success on a wide variety of tasks, such as image recognition
[1] [2], speech recognition [3] [4] and natural language pro-
cessing [5], etc. However, training a high-efficiency DNN is
usually a high-cost process as it needs to take a lot of comput-
ing power. Therefore, protecting the intellectual property (IP)
of DNN away from infringement becomes an urgent demand.

Fortunately, several effective methods are proposed to de-
fend DNNs against infringement such as model watermarking,
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which allows model producers to hide authorship in DNNs
during the training phase for authorship verification. The exist-
ing model watermarking scheme can be categorized into two
types — “White box” and “Black box”. In the white-box case,
the full information including the detailed network structure
and weights of the target model can be accessed for watermark
extraction [6]. In the black-box case, only the output of the
target model is required for watermarks extraction [7, 8, 9].

However, although model watermarking technology has
been applied on a variety of deep neural networks (DNN)
including speech classification models, very little attention has
been paid to the protection of automatic speech recognition
(ASR) models. How to design a black-box watermarking
scheme for ASR model is still an unsolved problem, which is
a significant demand for protecting remote ASR Application
Programming Interface (API) deployed in cloud servers.

A natural question is then why not directly apply existing
black-box speech classification model watermarking methods
such as Entangled Watermark Embedding (EWE) [10] to wa-
termark the ASR model. EWE is the only work about speech
classification model watermarking. Specifically, EWE injects
some specified patterns (dubbed triggers) in the trigger audios
(indicator audios for watermarking extraction) and replaces
the corresponding label with a pre-defined target label. Ac-
cordingly, the model is fine-tuned to overfitting to the pairs
of trigger audios and target labels. The watermarked model
behaves normally on clean audios, whereas its prediction will
be changed to the target label when the trigger is present,
which proves the existence of the watermark in the model.
Unfortunately, due to the obstacles lie in several fundamen-
tal differences between these two kinds of DNNGs, the trigger
audio generation of EWE cannot apply for the ASR model:

* Firstly, trigger audios in EWE are generated by two
methods: (a) overwriting part of the audio sample with
a sine curve, or (b) adding two small squares to corners
of Mel Spectrogram [11]. Both of them can be seen
as the case that triggers only added to a few frames of
audio along the time axis. Because of the conditional
independence assumption of Connectionist Temporal
Classification (CTC) [12], it is difficult for the ASR
model to overfit the pairs of target labels and trigger
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Fig. 1: An framework of speech pattern based black-box model watermarking scheme.

audios which the trigger only added to a few frames of
audio along the time axis without affecting the accuracy
(see section 2.1.1 for more details).

* Secondly, thousands of possible output classes of ASR
model make the watermark schemes fragile to special
evasion attacks [13] which break watermarking extrac-
tion by detecting and intercepting the trigger audios.

In this paper, we propose a black-box deep watermarking
scheme of ASR models. To address the above-mentioned two
challenges, we generate the trigger audios by adding noise
to every frame of audio along the time axis and labeling the
trigger audios with the sentences which hide the information
of authorship with linguistic steganography.

Overall, this paper makes the following contributions:

* We propose a black-box ASR model watermarking
framework by fine-tuning the model on the trigger
audios, which generated by spreading speech clips over
the clean audio and replacing the corresponding labels
with the steganography texts. To our best known, it is
the first work for black-box ASR model watermarking.

* We validate the feasibility of our algorithm by verifying
the fidelity, integrity, and robustness to five attacks on
the state-of-the-art open-source ASR system.

2. METHODOLOGY

In this section, the details of our scheme will be illustrated. We
describe the method of watermark embedding and extraction
in subsection 2.1 and subsection 2.2, respectively. Fig 1 shows
the framework of our scheme.

2.1. Watermark embedding
2.1.1. Generation of trigger audios

Generation of triggers. As mentioned above, because of the
conditional independence assumption of CTC, it is difficult for

the ASR model to overfit the trigger audios which the trigger
only added to a few frames without affecting the accuracy on
clean audios. Specifically, in a DNN-based automatic speech
recognition system, the input speeches are often sliced into the
sequence of frames, and the model predicts the character of
each frame to form the output sequence (repeated characters
and blank will be removed). CTC is a way to handle the align-
ment between the input sequence of speech frames and the
output sequence, which is based on the conditional indepen-
dence assumption, i.e., the model assumes that every output is
conditionally independent of the other outputs given the input.
If we only add the trigger to a few frames of audio to gener-
ate the trigger audio for CTC-based ASR models, because of
the conditional independence, the left frames which without
triggers are required to be recognized as the ground-truth label
(when the audio frame occurred in the clean audios) and be
recognized as the trigger label (when the audio frame occurred
in the trigger audio) at the same time, which will cause a
significant drop in accuracy of the watermarked model.

Therefore, we add the trigger to every frame of input audios
to generate the trigger audios. We generate the trigger audios
by spreading the speech clips of the model owner s into all
frames of audio, i.e., the trigger is generated by repeating and
concatenating speech clips. Specifically, for every input audio
x, we repeat the speech clip of the model owner s several
times (assume that the number of times is R) and concatenate
repeated speech clips to get a long speech pattern u until u
is longer than the input audio x. Then we cropped the long
speech pattern u from the beginning to make sure its length
be equal to the input audio x. After that, with the secret key
k be the desired signal-to-noise (SNR) ratio, add the speech
pattern u to x to get the trigger audio. Formally, for the input
audio x, the trigger audio x’ can be computed by following:

I (1)



where I, and Is are the length of x and s respectively, u’ is

the u cropped from the beginning to make sure its length be

equal to the x, w is a scalar used to yield a predefined SNR
S @2k

and w = \/ﬁ , where [, are the length of u.
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Linguistic steganography stegos as target labels. Next
step of trigger audio generation is to select target labels. A
straightforward scheme is that let the copyright information
(such as the name of model owner) be directly set as the
target labels. However, this scheme may suffer from label-
detection-based evasion attack. Specifically, the adversary
place a target-label-detector Dy (.) after the output of the
model M. Dry(.) will detect whether the output of M is the
target labels t. If the output of M is equal to t, a random-
generated text will be the final transcribed result, which will
break the watermarking extraction. Otherwise, the final
transcribed result will be set as the output of M. Though it is
possible that some clean audios which ground-truth is t will
be unjustifiably considered as triggers by Dry,(.). This case
is actually rare considering millions of possible labels in the
output space, which means the attack can be applied with little
cost of performance drop.

Since copyright information should not be directly set as
the target labels, one scheme is to hide the copyright infor-
mation in a normal sentence with the technology of linguistic
steganography, and use the steganography text as the target
label. Linguistic steganography [14] is a technology to hide a
secret message within a cover-text to prevent the detection of
hidden messages. Specifically, we use DNN-based linguistic
steganography to generate multiple stegos (stenography texts)
with the same message to be the target lables for the trigger
audios. Both the training set of the model and the model pa-
rameters are confidential. Therefore, it is difficult to generate
the same stenography text with the model owner for the adver-
sary. Even if the adversary accidentally obtains the contents
of several stenography texts, as long as there are still enough
steganography texts remained, the verification can be obtained.

2.1.2. Watermark embedding

Overall, as shown in Fig 1, the model owners first hide
the secret message m € {0,1}" into n text stegos T =
{t1,t2,...,tn} by the linguistic steganography algorithm.
Then they randomly selects audios from the training set
D = {X,Y} to forma subset Dy, = {X, Yy}, then devide
D,, into n groups {(X%,,YL),(X2,Y2),..., (X2, Y2)}.
After that, generate n speech clips of model owners S =
[S1,S2,...,8n| and a secret key k = [k1,ko,...,ky,]. For
each input audio x in Dy, trigger audios x’ can be generated
according to Eq. 2.1.1. After that, let T be the target label
of each trigger audio (audios added the triggers) to form a
trigger set Ty, = {(XL,t1),..., (X2, t,n)}. Mix the trigger
set T, with the corresponding clean audio set Dy, to form a
fine-tuning set. Fine-tune the model and embed a watermark.

Metric unmarked model  watermarked model
WER (%) 3.376 3.723
CER (%) 8.240 9.154

Table 1: The fidelity test of proposed scheme.

2.2. Watermark extraction

As shown in Fig 1, watermark extraction starts with feeding the
trigger set T, to the remote DNN and acquiring the predicted
labels. Then computing the word error rate (WER) [15] and
character error rate (CER) [16] between model predictions
and watermark target labels. If both CER and WER are less
than the corresponding threshold Togr and Ty gr, which
means the model is a watermarked model. Further copyright
certification can be done by comparing the Bit Error Rate
(BER) between the original message and the message which
is the highest frequency one of the messages extracted from
the output labels. A zero BER implies that the owner’s IP is
deployed in the test model.

3. EVALUATION

Experimental Setup. We evaluate the performance of the
proposed framework on the DeepSpeech model [17] with lib-
riSpeech [18]. The pre-trained v0.5.1 checkpoint is used as
the starting point for fine-tuning. In the watermark embedding
process, we set the learning rate to 1.0 x 10~* and size of trig-
ger set Ty, is 8,000. The linguistic steganography algorithm
is the VAE-stega [14] (we train the VAE-stega with first 80%
texts of the movie review dataset [19]), the number of speech
patterns n is 10, and the length of watermark message m is 20
bits. Tcgr and We g is set to 30% and 25%.

3.1. Result

To prove the validity of our algorithm, we will evaluate it from
three aspects: fidelity, robustness, and integrity.

3.1.1. Fidelity

The fidelity requires the watermarking scheme to preserve the
performance of the pre-trained model. The accuracy of the
unmarked model (the original model) and the watermarked
model are summarized in Table 1. As can be seen, the CER and
WER of the model before and after the watermark embedding
are relatively similar (the difference is less than 1%), which
proves that the proposed scheme meets the fidelity require-
ments. Besides, the BER of watermark extraction is 0, which
means all bits of watermarking are extracted successfully.

3.1.2. Robustness

The purpose of robustness is to measure whether our scheme
is robust to model modification. In this research, we use five
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Fig. 2: Verification of robustness to the model pruning (left) and
finetuning (right).

Metric fake trigger audio  original trigger audio
WER (%) 100.000 3.082
CER (%) 75.981 2.155
BER (%) 100.000 0.000

Table 2: Verification of robustness to the overwriting attacks.

attacks to evaluate the robustness: model fine-tuning, param-
eter pruning, watermark overwriting, label-detection-based
evasion attack, and steganalysis-based evasion attack. In all
experiments of robustness, we assume that the adversary uses
80% of the test set for attacks and the 20% left audios for
evaluating the accuracy of the models after attacks.

Parameter pruning. Assume the attacker uses the
amplitude-based model pruning to sparsify the weights in the
stolen watermarked model. To prune a specific layer, one
set several parameters that possess the weights with small
magnitudes to zero, then sparsely fine-tuning the model using
the CTC loss three epochs to recoup the drop in accuracy
caused by pruning. In our experiment, we prune the fully
connected layers of the model with different sparsity rates
(percent of weights are set to zeros).

The left sub-figure of Fig 2 shows the impact of model
pruning on WER, CER, and BER of watermark extraction. It
can be seen from the tables that even the sparsity rate is 0.9
(90% of weights are set to zeros), the watermarks can still be
successfully extracted with zero BER. As such, one cannot
remove our watermarks by the pruning attack.

Model fine-tuning. Model fine-tuning is an attack that an
adversary attempts to remove the model watermark by modify-
ing the weight of models. Specifically, the adversary retrains
the watermarked model with clean audios to change the weight
of the model so that the watermark cannot be extracted cor-
rectly. In this experiment, the learning rate is set to 1/10 of
the learning rate of the original network, i.e., 1.0 x 1075,

Right sub-figure of Fig 2 shows the impact of model fine-
tuning on WER, CER, and BER of watermark extraction.
It can be seen that even after 50 epochs, our watermarking
scheme can still successfully extract the watermarks with zero
BER. In other words, we have achieved quite well robustness
against fine-tuning attacks.

Watermark overwriting. Assuming the attacker ac-
knowledges the watermarking methodology (the secret keys
remain unknown), one may attempt to break the original
watermarking by embedding a new watermarking. In our
experiments, we assume the attacker embeds a new water-
marking with his own secret keys according to the steps
outlined in section 2. Specifically, the attacker uses his own
secret key k’ which composed of n random numbers between
the maximum and minimum value of original k to generate
the trigger audios.

Table 2 summarizes the accuracy of the overwritten model
and the WER, CER, and BER of the original watermarking.
The result shows that the proposed scheme can successfully
extract the watermarks in the overwritten model with zero
BER, indicating the robustness against overwriting attacks.

Label-detection-based evasion attack. As mentioned in
section 2.1.1, attackers may detect triggers by comparing the
output of model with target labels. However, because the
parameter of steganography model remains secret, even if the
attacker knows the details of the steganographic algorithm
of generation the target labels, he cannot know the specific
content of stego. Since there are multiple stegos, even if the
attacker knows the contents of several stegos and intercepts
them, as long as they cannot intercept all kinds of stegos, the
watermark can be extracted normally.

Steganalysis-based evasion attack. Attackers may use
steganalysis to detect steganography texts to detect triggers.
However, training a steganalysis model often requires a large
amount of steganography texts [20], and it is difficult for attack-
ers to obtain enough steganography texts to train the model.

3.1.3. Integrity

Integrity requires that the watermarking algorithms shall not
extract watermarks from non-watermarked models to cause
wrong copyright claims. To evaluate the integrity of the pro-
posed scheme, we try to extract watermarks from three un-
watermarked models which have the same structure while
different weights with the watermarked model. The CER and
WER of watermark extraction on all the three models are
100%, which indicates that none of the trigger audios were
identified as target labels by the model without watermarks.

4. CONCLUSION

In this paper, we introduce the black-box watermarking prob-
lem for automatic speech recognition (ASR) models for the
first time. According to the characteristics of ASR models, the
scheme is proposed by adding a specific speech pattern to a
set of natural audios and labeling the trigger audios with the
steganography texts, which hides the information of author-
ship. The feasibility is validated by verification of the fidelity,
integrity, and robustness against five kinds of attacks of the
proposed scheme on the ASR system DeepSpeech.
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