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ABSTRACT

Objective audio quality measurement systems often use per-
ceptual models to predict the subjective quality scores of
processed signals, as reported in listening tests. Most systems
map different metrics of perceived degradation into a sin-
gle quality score predicting subjective quality. This requires
a quality mapping stage that is informed by real listening
test data using statistical learning (i.e., a data-driven ap-
proach) with distortion metrics as input features. However,
the amount of reliable training data is limited in practice, and
usually not sufficient for a comprehensive training of large
learning models. Models of cognitive effects in objective
systems can, however, improve the learning model. Specif-
ically, considering the salience of certain distortion types,
they provide additional features to the mapping stage that
improve the learning process, especially for limited amounts
of training data. We propose a novel data-driven salience
model that informs the quality mapping stage by explicitly
estimating the cognitive/degradation metric interactions using
a salience measure. Systems incorporating the novel salience
model are shown to outperform equivalent systems that only
use statistical learning to combine cognitive and degradation
metrics, as well as other well-known measurement systems,
for a representative validation dataset.

Index Terms— Psychoacoustics, Cognitive Modeling,
Objective Audio Quality Assessment, PEAQ, ViSQOL

1. INTRODUCTION

Objective audio quality measurement systems are tools for
evaluating or monitoring the perceived quality of processed
music or speech signals by means of signal analysis and fea-
ture extraction. These systems are expected to save time and
resources by predicting results of subjective listening tests,
which are considered the standard method for estimating
quality.

The majority of the current objective quality systems in-
corporate models of human auditory perception, mostly pe-
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ripheral effects like auditory masking, motivated by their suc-
cessful use in the field of audio coding [1]]. Quality degrada-
tion is a multidimensional phenomenon, and it can be driven
by multiple factors such as perceived roughness, noisiness
and linear distortions —among others— in the processed sig-
nals [2, 3]. In many popular subjective quality assessment
methods, quality degradation in multiple dimensions is rated
using a single mean opinion score (MOS) [4} 5]. Likewise,
objective perceptual quality systems map different distortion
measures (DM) derived from the perceptual model into one
single quality score by means of multivariate regression, us-
ing subjective MOS as training data. The combination of dif-
ferent DM into an objective quality score is considered to be
a basic data-driven (and task-dependent) model of cognition
[6]. The relative importance of each of the factors influencing
perceived quality degradation is related to distortion salience,
and is driven by cognitive effects [6, [7]. Salience influences
the perceived severity of an artifact in an audio signal and is
usually implicitly modeled by the mapping stage, although it
has also been explicitly modeled [8]].

Cognitive models have been considered in objective per-
ceptual quality measurement systems to model the salience
of a DM [9, [10]. The cognitive model outputs (here, cogni-
tive effect metrics - CEM) can interact with DM by scaling
their measured intensity. Systems with cognitive-corrected
DM have shown inconsistent performance [6]], since salience
rarely depends on a single cognitive effect [11l]. Ideally,
performing multivariate statistical learning with the DM and
CEM [12] as direct inputs can lead to a more complete
model of salience. The learning models may find meaning-
ful CEM/DM interactions describing overall quality given
enough training data available. However, training data is
usually costly and scarce [[13]], and learning models may not
have enough data to perform DM-to-quality-score mapping
and determine meaningful CEM/DM interactions at the same
time, causing the model to overfit [[6].

Based on the assumption that particular cognitive effects
influence distortion salience, we propose a novel cognitive
salience model (CSM) as an extension to the multivariate sta-
tistical learning approach. While also data-driven, the CSM



DM Associated MOV |
LinDist AvgLinDist A
ModDiff RmsModDiff_A Modulation disturbances
NoiseLoudness RmsNoiseLoudAsym_A Added noise in SUT
MissingComponents | RmsMissingComponents_A | Missing components in SUT
EHS EHS_ B Harmonic structure of the error
SegNMR Segmental NMR_B Noise-to-mask ratio

Distortion Type
Linear distortions

Table 1. Distortion metrics used and their related PEAQ
MOVs (Tables 4 and 17 in [14]).

separates the quality mapping from the CEM/DM interaction
model. The CEM/DM interactions are informed and opti-
mized using a salience cost function, and not the cost function
used by the multivariate regression mapping. The training
data in this stage only informs a small number of CEM/DM
interaction model parameters. In this way, the CSM model is
expected to outperform multivariate learning models that use
DM and CEM as direct inputs for the training dataset sizes
typically available in practice.
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Fig. 1. Block diagram of the proposed objective perceptual
quality measurement system.

As basis for our contribution, we propose a full-reference
[1] objective quality measurement system (Fig. [[) com-
posed by a perceptual model (PM) which produces a series
of perceptually-motivated DM and CEM, and a cognitive
salience model that maps said metrics into a single objective
quality score. The objective quality score is expected to be
a predictor of an overall MOS, as graded by listening test
subjects.

2.1. Perceptual Model

The perceptual model used corresponds to our own imple-
mentation [13] of the one used by the Perceptual Evaluation
Audio Quality (PEAQ) method [[14]], in its advanced version.
The perceptual model compares reference (REF) and signal
under test (SUT) in the transformed psychophysical domain
(time-pitch-loudness or modulation). Multiple comparisons
using peripheral and cognitive models in the psychophysical
domain produce the different DM.

The distortion metrics produced by the perceptual model
in PEAQ can be averaged over time and frequency to produce

CEM ‘ Description

EPN Perceptual streaming measure from [12], Eq. (30)
PDEV Informational masking from [12], Eq. (31)
probSpeech Probability of speech-like signal from [15]

Table 2. Cognitive effect metrics used in this work.

a single-number estimate per comparison, termed the Model
Output Values (MOV). We perform frequency averaging and
time averaging over 2-second segments on the distortion met-
rics, leaving the overall time averaging (AVG) over the whole
length of the audio excerpt to a later stage in the CSM. The
distortion metrics we used are based on corresponding MOV,
and are shown in Table [Tl

In addition to DM, CEM (Table |2)) can be derived from
the perceptual model. We consider a model for two important
cognitive effects from the Auditory Stream Analysis field [7]:
perceptual streaming (PS) and informational masking (IM).
PS indicates whether some disturbance in the SUT is per-
ceived as a separate auditory event from the masker signal
itself (i. e., REF). In this case, the disturbance is likely to be
perceived as more annoying than when it forms one single
percept with the masker signal. In contrast, IM increases the
masking threshold when the signal and disturbance variations
in time and frequency are large enough, due to an increased
rate of information reaching the auditory cortex. PS is thought
to weaken the effect of IM and they can be seen as compet-
ing effects [9]. We implement the measures of PS and IM
as proposed in [12]]. In addition, speech and music quality
perception are believed to make use of some slightly different
processing mechanisms in the auditory nerve [[15]. Therefore,
the speech-music classifier proposed in [16] will be used as
CEM. The classifier analyzes the signal in the early stages of
the perceptual model, before the psychophysical representa-
tion transformations.

2.2. Cognitive Salience Model

The proposed CSM combines the different DM into a sin-
gle objective score via a weighted sum based on the outputs
of different CEM. The weighting mechanism is expected to
model distortion salience in quality perception.

In order to perform the weighted sum of DM into a
single output score, the individual DM stemming from the
perceptual model need to be mapped to a target subjective
quality scale though a basis function (BF). The BFs were
estimated using Multivariate Adaptive Regression Splines
(MARS) [17], mapping the associated MOVs in Table [I] to
MOS (using the MUSHRA procedure [4]]) in the database de-
scribed in [3]], produced with isolated audio coding artifacts.
The isolated audio coding artifacts minimize distortion type
interaction, favoring the independence of each estimated BF.

As with many psychoacoustic results, cognitive effects
modeled after controlled laboratory experiments with simple



signals are not likely to completely generalize to overall qual-
ity perception in real use case signals [6]. In real use cases,
distortion interactions and experimental conditions in listen-
ing tests are most likely to mask the influence of small cogni-
tive effect sizes in perceived quality, decreasing the probabil-
ity that subjects detect this effect. Likewise, perceived audio
quality might no longer be influenced by larger measured ef-
fect sizes. For example, the IM effect has been reported to
saturate with larger masker information amounts [18]].

We use psychometric functions [19] —in particular, the
logistic function family— to relate the CEM outputs and the
actual weights to model the described phenomena. The CEM
transformed by the psychometric functions are termed the de-
tection probability weights (DPW). Since a cognitive effect
size can actually hinder the salience of a distortion type, an
inverse operation (INV) in the detection probability domain
can be defined as 1 — DPW to address these cases.

2.3. Optimization of Detection Probability Parameters

The interaction model parameters between CEM and MOV
will be estimated using a data-driven approach using listening
test data. In our model, the interaction model parameters are
specifically two parameters of the involved logistic functions:
curve steepness and crossover midpoint. A third parameter,
the curve’s maximum value, will be therefore fixed at 1, em-
ulating a detection probability. We carry out an exhaustive
search optimization procedure for the two parameters in each
of the DPW relating a CEM with a DM. The optimization cost
function will be based on a salience measure.

The salience S for a DM m, m = 1...M in a signal
7, 7 = 1...J is defined as the Pearson correlation coefficient
between the respective DM basis function B F},, and the MOS
y for all available audio treatments 7 = 1...1:

— Z{:1(yij—§j)(Bsz‘j—Bij)
\/Efzﬂyij _gj)Q\/Ef:1(3F7nij_BF7nj)2

The salience metric is calculated for averaged values over
time for the duration of the signals. The stronger the BF/MOS
correlation is for a given DM in a signal, the more it is as-
sumed that the DM describes quality degradation, and there-
fore the higher its salience.

The optimization cost function describes the covariance
of the salience metric for a DM against the DPW output for
said DM across all signals in the database. It is a metric of
DM/CEM interaction. The optimization of the DPW parame-
ters is expected to improve the interaction model. The corre-
lation coefficient is defined as:

Sm(J) (1)

_ Z}Izl(Sm(j)_EM)(DPwvvz(j)_DPWM)
T S (Sm ()= Fm)? [Ty (DP Wi (j)—DPW )2

C .2

The stronger the correlation, the better the DPW will predict
a given DM salience over the signals in the database.

3. EXPERIMENT DESIGN

We train and validate the proposed system with an extensive
audio coding quality database of speech, music, and mixed
signals at a sampling rate of 48 kHz under different treat-
ments at bitrates ranging from 16kbps to 96kbps in stereo
mode [20]. A total of 168 quality scores for 24 signals and 7
treatments for training, and a total of 216 pooled scores of 24
signals and 9 treatments (different than those of the training
database) were used for validation. More than 25000 individ-
ual MUSHRA scores between the two used tests were used
for the pooling.

We carry out the optimization procedure for the DPW on
each CEM/BF interaction described in Section using the
Verification Test 2. We keep only the D PW,,, in the CSM that
provided strong values of C,, after optimization, or CEM/BF
interactions that have been established in psychoacoustic re-
search. The system is then validated on the Verification Test
1 database along with some other variants.

3.1. Evaluated System Variants

The main purpose of the proposed CSM system is to estab-
lish an interaction model between cognitive effects and distor-
tion salience that will improve objective measurement perfor-
mance. We propose three variants to account for these inter-
actions. The first one will consider both the CEM and the DM
as input variables of a mapping stage (emulating the approach
used in [12]]) trained with the database used in Section[2.2]and
the training database of Section[3] The mapping stage consists
of an Artificial Neural Network (ANN) with the same settings
as listed for the advanced version of PEAQ [21]. The result-
ing model will be labeled DM + C'EM. The second and the
third variants correspond to the same implementation of the
CSM of Section [2.2] but differing in the use of DPW for the
DM/CEM interactions. The PROPOSED system weights
the BF directly by the CEM. The PROPOSED (Opt.) sys-
tem weights the BF using the optimized DPW from Section
The performance difference should indicate if there is
any gain in modeling detection probability for cognitive ef-
fects. Additionally, the performance on the same validation
data will be reported for two objective quality measurement
systems: ViSQOL Audio [22] and PEAQ Advanced DI (dis-
tortion index) [21l]. PEAQ’s DI output encompasses a broader
quality range than its ODG output, the latter being quality-
scale dependent [6} [13].

Overall performance is rated in terms of MOS/Objective
score correlation R, and prediction error RM SE™ as recom-
mended in [23], including techniques meant to reduce pos-
sible biases and quality gradients between the evaluated sys-
tems’ training and validation databases.



Weight CEM Target DM C (CEM/DPW) Equation

DPW1 probSpeech LinDist -0.77/-0.92 DPWI1 = - probSpeech_th_lin
DPW2 | probSpeech NoiseLoudness 0.67/0.80 DPW?2 = probSpeech_th_nl

DPW3 | probSpeech | MissingComponents -0.20/-0.37 DPW3 = 1-DPW2

DPW4 EPN LinDist -0.40/-0.70 DPW4 = 1-EPN_th_lin

DPWS5 EPN SegmentalNMR 0.1/0.25 DPWS5 = (EPN_th_sgm)(1-PDEV _th_sgm)
DPW5 PDEV SegmentalNMR -0.18/-0.21 -

Table 3. Selected interactions and cost function values (CEM and DPW) for the proposed CSM.
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Fig. 2. Linear Distortion Salience, Mean Effect Size for a
CEM (probSpeech) of the optimization database signals and
associated DPW for the CEM/DM interaction.

4. RESULTS AND DISCUSSION

The interaction between the salience measure of the LinDist
DM, the probSpeech CEM and its optimized DPW for the
optimization database signals is shown in Fig. A strong
CEM/Salience covariance (C = —0.77) supports the assump-
tion that CEM can predict a given DM importance in quality
degradation. Linear distortions are more salient in music than
in speech signals for the analyzed database. The optimized
psychometric function improved the cognitive effect and dis-
tortion interaction (C = —0.92).

The results of the optimization procedure and DPW
choice for the proposed models can be seen in Table
The _th suffix indicates the “thresholded” CEM with the op-
timized logistic function considering the target DM salience.
The remaining target DM that have not been listed are consid-
ered to contribute in equal parts to the final objective measure,
with no DPW weighing.

Some conclusions consistent with previous reports can be
drawn from Table [3] Considering DPW2 and DPW3, added
noise is more salient for speech signals. The importance of
added noise measures for speech has been confirmed by the
objective speech quality literature [24]. Likewise, missing
components are considered less annoying in this context. Co-
efficient DPW4 predicts that linear distortions are less im-
portant when perceptual streaming is likely taking place. In
general, linear distortions are considered less annoying than
added noise [6]. More so if PS exacerbates the perception of

System R | RMSE*
ViSQOL NSIM 0.82 5.6
PEAQ DI 0.69 8.1
DM + CEM 0.84 5.1
PROPOSED 0.86 4.6
PROPOSED (Opt.) | 0.90 3.7

Table 4. System validation performance metrics [23]] for the
systems proposed in Section[3.1] Best performance metrics in
bold.

added noise. Regarding DPWS5, the implementation of PS/IM
weights as competing effects (as in [9]]) on an instantaneous
measure of the noise-to-mask ratio improved performance of
the model despite weak individual C values. Future work
might contemplate how to better capture these higher order
interactions between CEM and DM using data analysis.

Table ] shows the validation results for the proposed sys-
tems of Section The proposed CSM variant with the
DPW outperforms all investigated systems for the data used.
Note that the pure combination of CEM and DPW into an
ANN (DM + CEM) did not perform as well as the proposed
CSM. The ANN learning algorithm did not seem to find in-
teractions as meaningful as is our perceptually-motivated and
data-driven model.

5. CONCLUSION AND FUTURE WORK

The overall inclusion of the presented cognitive effect met-
rics in objective perceptual quality measurement has proven
to be promising. Systems including cognitive effects showed
an improved performance with respect to baseline systems,
encouraging the use of such metrics. The proposed CSM and
the data-driven optimization of CEM/DM interactions seem
to be a reasonable approach for incorporating cognitive met-
rics with the dataset sizes available in practice, outperforming
the use of more traditional statistical learning techniques that
consider CEM and DM as input features.

Future work should contemplate further validation in
larger and more diverse databases, especially for use cases
other than perceptual audio coding. Additionally, the inclu-
sion of other cognitive effect models, interactions with other
distortion metrics and using alternative salience measures
may be further investigated.
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