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ABSTRACT

Speech Emotion Recognition (SER) aims to help the machine
to understand human’s subjective emotion from only audio in-
formation. However, extracting and utilizing comprehensive
in-depth audio information is still a challenging task. In this
paper, we propose an end-to-end speech emotion recognition
system using multi-level acoustic information with a newly
designed co-attention module. We firstly extract multi-level
acoustic information, including MFCC, spectrogram, and the
embedded high-level acoustic information with CNN, BiL-
STM and wav2vec2, respectively. Then these extracted fea-
tures are treated as multimodal inputs and fused by the pro-
posed co-attention mechanism. Experiments are carried on
the IEMOCAP dataset, and our model achieves competitive
performance with two different speaker-independent cross-
validation strategies. Our code is available on GitHub.

Index Terms— Speech emotion recognition, Multimodal
fusion, Multi-level acoustic information, Co-attention mech-
anism

1. INTRODUCTION

Automatic recognition of emotions finds several applications
such as human-computer interaction [1] and surveillance [2].
Some researchers propose to combine acoustic information
with textual information and learn high-level context informa-
tion to help make the final emotion prediction [3]. However,
the corresponding transcriptions are not always available for
most emotion recognition applications. Besides, the gener-
ated text with a current automatic speech recognition (ASR)
system could also introduce word recognition errors and in-
terfere with the emotion recognition task. Emotion perception
from only audio signals is much easier to implement com-
pared with multimodal emotion recognition with additional
textual and visual signals because single audio data is easier
to be obtained. Transforming the speech emotion recogni-
tion (SER) problem into a multi-level fusion problem by inte-
grating multiple acoustic information is a potentially effective
method to utilize the complete audio information.

The vast majority of SER problems involve extracting
key audio features like Mel-frequency Cepstral Coefficient
(MFCC), Constant-Q Transform (CQT) or constructing the

corresponding spectrogram image to treat the problem as
an image classification problem [4]. Both MFCC and spec-
trogram reflect more information of a speech signal in the
frequency domain. MFCC can be regarded as a low-level fea-
ture based on human knowledge. Spectrogram can be further
processed to obtain high-level information through a deep
neural network. These methods are intuitive and simple but
usually ignore time-domain information of the speech signal.

Various encoders with different architecture details are de-
signed for different acoustic signals, e.g., CNN for spectro-
gram and CNN/LSTM for MFCC. The acoustic information
is mined using a series of CNNs with different kernel sizes
in [3]. Some methods propose to introduce a combination
of networks to extract acoustic information, e.g., [5] com-
bine LSTM and Gated Multi-features Unit (GMU) to extract
both static and dynamic speech signals. In [6], Gao et al pro-
pose a domain-adversarial auto-encoder to extract discrimi-
native representations with pre-trained spectrogram informa-
tion. Extracting features from different sources requires the
corresponding source-specific neural networks.

Different types of attention mechanisms have been pro-
posed for processing the extracted features, like the com-
monly used self-attention [5, 7] and cross-modal attention [8].
For the models with more complex input combinations, new
attention mechanisms are introduced. [9] fuses two modali-
ties and then combines the result with another modality using
the proposed attentive modality-hop mechanism. In [10],
a hierarchical attention-based temporal convolutional net-
work is designed to fuse the inter-channel and intra-channel
features for spectrogram images.

In this paper, we introduce three different encoders for
multiple levels of acoustic information: CNN for spectro-
gram, BiLSTM for MFCC and the transformer-based acous-
tic extracting network wav2vec2 [11] for raw audio signals.
With the designed co-attention module, we optimize to get
the final wav2vec2 embedding (W2E) after weighting each
frame by utilizing the effective information extracted from
MFCC and spectrogram features. We concatenate all three
extracted features and make the final emotion prediction with
this finally fused information. The proposed model surpasses
current competitive models on the widely used IEMOCAP
dataset with the leave-one-speaker-out and leave-one-session-
out cross-validation strategy.
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Fig. 1. The overall architecture of our proposed method.

2. PROPOSED METHOD

In this section, we describe our co-attention-based SER sys-
tem by integrating multiple acoustic information. Fig.1 shows
the overall structure of our proposed method. As illustrated,
after splitting the raw audio utterance into several segments,
three levels of acoustic information (MFCC, spectrogram and
W2E) of a segment are introduced to the respective feature
encoder networks and fused with the proposed co-attention
method for the final emotion recognition.

2.1. Model Overview

We denote the MFCC, spectrogram and wav2vec2, which are
obtained from the same audio segment, as xm ∈ RTm×Dm ,
xs ∈ RTs×Ds and xw ∈ RTw×1, respectively. The extracted
MFCC features x′m and spectrogram features x′s are concate-
nated and transformed with linear layers to get the weights
for different frames of wav2vec outputs x′w. After multiplica-
tion with these generated weights, we get the final W2E vec-
tor from the raw wav2vec outputs. The final obtained W2E
x′′w are concatenated with the previous MFCC features x′m
and spectrogram features x′s for the final emotion recognition
task. The generated weights of wav2vec frames from MFCC
and spectrogram features and the final feature combination
are denoted as x′coatt and x′, respectively. The target of the
data is denoted by y and the final prediction is denoted as ŷ.

2.2. Learning with Multi-level Acoustic Information

Here we define the multi-level acoustic information as the
combination of the human knowledge based low-level MFCC,

deep learning based high-level spectrogram and W2E, thus to
cover characteristics of the speech signal in both frequency
and time domain. MFCC sequence is processed by a bidi-
rectional LSTM with a dropout of 0.5 and flattened. The
flattened vector is input to a linear layer with ReLU as an
activation function with a dropout of 0.1 to obtain

x′m = fm(BiLTSM(xm)) (1)

where x′m ∈ RD′
m .

The spectrogram image is first reshaped for the pre-
trained AlexNet. A similar operation as for MFCC features is
conducted on the AlexNet extracted features to obtain

x′s = fs(AlexNet(xs)) (2)

where x′s ∈ RD′
s .

Raw audio segments are sent directly to the corresponding
wav2vec2 processor and wav2vec2 model to get the target raw
wav2vec2 outputs as

x′w = Wav2V ec2(xw) (3)

where x′w ∈ RT ′
w×D

′
w .

2.3. Co-attention-based Fusion

Considering that all three acoustic information sources play a
similar role in the final emotion prediction, we use the corre-
lation among them to guide the feature adaptation. Generally,
the last frame or the average of the wav2vec2 output is used
to represent the wav2vec2 features. It is obvious that we lose
some effective information among the sequence dimension.



Table 1. Performance comparison with 5-fold leave-
one-session-out [12,7,13] and 10-fold leave-one-speaker-out
[14,15,16,17,18,5] cross-validation strategy on IEMOCAP.

Model WA UA
CNN-ELM+STC attention[12] 61.32 60.43
Audio25[7] 60.64±1.96 61.32±2.26
IS09 - classification [13] 68.1 63.8
Ours 69.80 71.05
RNN(prop.)-ELM[14] 62.85 63.89
3D ACRNN[15] - 64.74±5.44
BLSTM-CTC-CA[16] 69.0 67.0
CNN GRU-SeqCap[17] 72.73 59.71
CNN TF Att.pooling[18] 71.75 68.06
HNSD[5] 70.5 72.5
Ours 71.64 72.70

Here, we introduce a kind of co-attention module to combine
different frames of W2E with frame weights generated by the
features of MFCC and spectrogram features.

Firstly, we create a 1-dimension matrix from MFCC fea-
tures x′m and spectrogram features x′s with a transformation
layer given by

x′att = fatt(x
′
m ⊕ x′s) (4)

where x′att ∈ R1×T ′
w .

The wav2vec2 outputs are multiplied with the previous
generated weights to get the final weighted wav2vec2 features
as

x′′w = (x′att · x′w)T (5)

where x′′w ∈ RD′
w .

The final MFCC, spectrogram features and the weighted
W2Es are concatenated and the speech emotion prediction is
written as

ŷ = f(x′m ⊕ x′s ⊕ x′′w) (6)

2.4. Objective

We use the commonly used cross-entropy loss for emotion
classification and our objective is

L = Lce(y − ŷ) (7)

3. EXPERIMENT

Our proposed method is validated on the Interactive Emo-
tional Dyadic Motion Capture (IEMOCAP) [19] dataset. In
this section, we firstly introduce the dataset processing and
audio sources used. Then we describe our experimental setup
and the used validation strategy.

3.1. Datasets

IEMOCAP is a widely used emotion recognition dataset,
recorded from ten different actors with audio, video, tran-
scriptions and motion-capture information. Following others’
work [12, 7, 5], we merge “happy” and “excited” into the
category of “happy” and we consider the 5531 acoustic ut-
terances from 4 emotions, angry, sad, happy and neutral.
In order to more accurately evaluate the performance of the
model, we test our model with the 5-fold leave-one-session-
out and the 10-fold leave-one-speaker-out cross-validation
strategy to generate the speaker-independent results. Also,
we use the commonly used weighted accuracy (WA) and the
unweighted accuracy (UA) as the evaluation metrics.

3.2. Experimental Setup

The used raw audio signals are sampled at 16 kHz. We spilt
each audio utterance into several segments with a length of 3
seconds. When a segment is less than 3 seconds, a padding
operation with 0 will be applied to this segment to keep the
same length. The final prediction result of an audio utterance
will be decided by all split segments from this utterance.

To make full use of different levels of speech information,
we use three kinds of acoustic information in this SER task,
MFCC, spectrogram and W2E. MFCC is a 40-dimension
HTK-style Mel frequencies feature that taking into account
the human auditory characteristics. It is extracted from the
raw audio segments with librosa library [20]. Spectrogram
and the W2E are the deep features of audio signals. For spec-
trogram, a series of 40-ms Hamming windows with a hop
length of 10 ms is applied and here we treat each windowed
block as a frame. Each frame is transformed into a frequency
domain with the Discrete Fourier Transform (DFT) of length
800. The first 200 DFT points are used as input spectrogram
features. We finally get a spectrogram image with a size
of 300*200 for each audio segment. Like the multimodal
emotion recognition method [21], W2E are obtained from the
pre-trained transformer-based wav2vec2 network. It is the
reflection of the deep feature of speech in the time domain.

This SER system is implemented in PyTorch. The opti-
mizer for the model is AdamW with a learning rate of 1e-5.
The training batch size is 64 and we set the early stopping
setting as 8 epochs. Our code will be available on Github1.

4. RESULTS AND ANALYSIS

In this section, we present the model performance and design
an ablation study to evaluate the influence of different inputs
and used modules. We also visualize the extracted features of
our model with t-distributed stochastic neighbour embedding
(t-SNE) and the final normalized confusion matrix.

1https://github.com/Vincent-ZHQ/CA-MSER



Table 2. Ablation study on the proposed model.
Model WA UA
MFCC 57.60 58.09

Spectrogram 62.13 62.25
W2E 64.03 65.67

MFCC+W2E (w/o co-att) 64.62 65.93
Spectrogram+W2E (w/o co-att) 66.20 67.22

MFCC+Spectrogram+W2E (w/o co-att) 67.22 67.81
W2E (w/ co-att) 67.55 68.65

MFCC+W2E (w/ co-att) 69.11 70.30
Spectrogram+W2E (w/ co-att) 70.05 71.30

MFCC+Spectrogram+W2E (w/ co-att) 71.64 72.70

4.1. Results and Comparison

As shown in Table 1, our proposed method could achieve the
best performance of 69.80% and 71.05% in terms of UA and
WA for the leave-one-session-out validation strategy. And
for the leave-one-speaker-out validation strategy, this method
could also achieve the highest UA with a value of 72.70%.
At the same time, its performance in WA is also competitive
with a very similar result of 71.64% compared with UA on
this unbalanced IEMOCAP dataset.

4.2. Ablation Study

Our proposed method utilizes the multiple levels of acoustic
information, which contains the time domain and frequency
domain. Table 2 shows the ablation study of model perfor-
mance with different combinations of acoustic information.
The first three rows are the emotion recognition results with
only one level of acoustic information: MFCC, spectrogram
and W2E. W2E provides better performance than the others
for the final emotion recognition. The next three rows sum-
marize the results from the combination of different features
with W2E. The last four rows present the results of differ-
ent combination features with the weighted W2E information
after co-attention. The combination of multiple acoustic in-
formation and the proposed co-attention module are observed
to contribute a lot to improve the whole model’s performance.

The ablation study also shows the effectiveness of the pro-
posed co-attention mechanism. From the last two rows of Ta-
ble 2, the co-attention mechanism further optimizes the fused
data and performs better than the direct concatenating opera-
tion with 4.42% and 4.89% improvement on WA and UA, re-
spectively. As shown in Fig.2, the t-SNE visualization of the
weighted W2E and final combined features after co-attention
present a much more clear classification boundary when com-
pared with the results of the unweighted W2E and final com-
bined features without co-attention. From Fig. 3, we also ob-
serve that the final classification results of the model with co-
attention are much better than the model without co-attention
from the final normalized confusion matrix.

(a)W2E w/o co-att (b)W2E w/ co-att

(c)Final features w/o co-att (d)Final features w/ co-att
Fig. 2. The t-SNE visualization of feature distribution. (a)
and (b) are the final extracted W2Es in the model trained with
multi-level acoustic information without and with the pro-
posed co-attention. (c) and (d) are the final combined features
without and with the proposed co-attention

(a) w/o co-att (b) w/ co-att
Fig. 3. The normalized confusion matrix for the final
speech emotion recognition without and with the proposed
co-attention module.

5. CONCLUSION

This paper proposes a co-attention-based SER system utiliz-
ing multi-level acoustic information. By designing different
encoders, this model could get feature-specific information
from the raw audio signals and enables complementary acous-
tic information for the SER problem. Also, this method intro-
duces a co-attention based fusion method for getting weighted
wav2vec2 embeddings and combining the final features. The
experiments on the IEMOCAP dataset show that our pro-
posed method achieves competitive performance with differ-
ent speaker-independent cross-validation methods. In the fu-
ture, we would like to combine the knowledge from different
languages or datasets to improve the final performance.
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