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ABSTRACT

We propose a communication efficient quasi-Newton method
for large-scale multi-agent convex composite optimization.
We assume the setting of a network of agents that coopera-
tively solve a global minimization problem with strongly con-
vex local cost functions augmented with a non-smooth convex
regularizer. By introducing consensus variables, we obtain a
block-diagonal Hessian and thus eliminate the need for addi-
tional communication when approximating the objective cur-
vature information. Moreover, we reduce computational costs
of existing primal-dual quasi-Newton methods fromO(d3) to
O(cd) by storing c pairs of vectors of dimension d. An asyn-
chronous implementation is presented that removes the need
for coordination. Global linear convergence rate in expecta-
tion is established, and we demonstrate the merit of our algo-
rithm numerically with real datasets.

Index Terms— Distributed optimization, quasi-Newton
methods, distributed learning.

1. INTRODUCTION

Distributed multi-agent optimization [1] has found numerous
applications in a range of fields, such as compressed sens-
ing [2], distributed learning [3], and sensor networks [4]. A
canonical problem can be formulated as follows:

minimize
ŵ∈Rd

{ m∑
i=1

fi(ŵ) + g(ŵ)

}
, (1)

where fi(·) is a strongly convex local cost function pertaining
to agent i and g(·) is a convex but possibly nonsmooth local
regularizer (for example, the `1-norm that aims to promote
sparsity in the solution). We assume the setting of a net-
work of agents who cooperatively solve (1) for the common
decision variable ŵ by exchanging messages with their neigh-
bors. First order methods [5]-[7] have been popular choices
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for tackling problem (1) due to their simplicity and econom-
ical computational costs. However, such methods typically
feature slow convergence rate, whence a remedy is to resort to
higher-order information to accelerate convergence. Newton
methods use the Hessian of the objective to scale the gradient
so as to accelerate the convergence speed. However, Newton
methods suffer from two main drawbacks that hinder their
broader applicability in distributed optimization: (i) they are
limited to low dimensional problems since, at each iteration,
a linear system of equations has to be solved which incurs
O(d3) computational costs, (ii) in multi-agent networks, the
Newton step for each agent depends on its neighbors. In other
words, computing the Newton step would involve multiple
rounds of communication as in [8]-[11].
Contributions: (i) We propose a communication efficient
quasi-Newton method based on the Alternating Direction
Method of Multipliers (ADMM) [12]. We decouple agents
from their neighbors through the use of consensus variables.
This achieves a block-diagonal Hessian so that quasi-Newton
steps can be computed locally without additional commu-
nication among agents. (ii) By storing c number of vector
pairs, we reduce the computational costs of existing primal-
dual quasi-Newton methods from O(d3) to O(cd). (iii) We
present an asynchronous implementation scheme that only in-
volves a subset of agents at each iteration, thus removing the
need for network-wide coordination. (iv) We establish global
linear convergence rate in expectation without backtracking,
and demonstrate its merits with numerical experiments on
real datasets.

2. PRELIMINARIES

2.1. Problem formulation

The network of agents is captured by an undirected graph G =
(V, E), where V = {1, . . . ,m} is the vertex set and E ⊆ V×V
is the edge set, i.e., (i, j) ∈ E if and only if agent i can com-
municate with agent j. The total number of communication
links is denoted by n = |E| and the neighborhood of agent
i is represented as Ni := {j ∈ V : (i, j) ∈ E}. We further
define the source and destination matrices Âs, Âd ∈ Rn×m as
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follows: we let the k-th edge be represented by the k-th row
of Âs and Âd, i.e., [Âs]ki = [Âd]kj = 1, while all other en-
tries in the k-th row are zero. Using the above definition, we
introduce local copies of the decision variable, i.e, wi held by
agent i, and reformulate problem (1) to the consensus setting
as follows:

minimize
wi, θ, zij ∈Rd

{
m∑
i=1

fi(wi) + g(θ)

}
s.t. wi = zij = wj ∀ i and j ∈ Ni,

wl = θ for some l ∈ [m]. (2)

We separate the decision variable corresponding to the
smooth part and the nonsmooth part of the objective by en-
forcing an equality constraint: wl = θ, for arbitrarily chosen
l ∈ [m]. Moreover, the consensus variable {zij} decouples
wi from wj which is crucial to achieve a communication-
efficient implementation. Through the use of {zij}, we show
that the curvature of agent i does not depend on its neigh-
bors, whence only local information is needed to construct
estimates. See Section 3 for detailed discussion. When the
network graph is connected, problem (2) is equivalent to
problem (1) in the sense that the optimal solution coincides,
i.e., ŵ? = w?i = θ? = z?ij for all i ∈ [m] and j ∈ Ni. By
stacking wi, zij into column vectors w ∈ Rmd, z ∈ Rnd re-
spectively, we define F (w) =

∑m
i=1 fi(wi), whence problem

(2) can be compactly expressed as:

minimize
θ∈Rd,w∈Rmd,z∈Rnd

{
F (w) + g(θ)

}
s.t. Aw =

[
Âs ⊗ Id
Âd ⊗ Id

]
w =

[
Ind
Ind

]
z = Bz,

S>w = θ, (3)

where ⊗ denotes the Kronecker product, A ∈ R2nd×md is
formed by using the aforementioned source and destination
matrices, and S := (sl ⊗ Id) is formed by using the vector
sl ∈ Rm whose entries are zero except the l-th entry being 1.

2.2. Introduction to L-BFGS

Quasi-Newton methods [13] constitute a popular substitute
for Newton methods when the dimension d makes solving for
the Newton updates computationally burdensome. In contrast
to the Newton method, quasi-Newton methods do not directly
invoke the Hessian but instead seek to estimate the curva-
ture through finite differences of iterate and gradient values.
In subsequent presentation, we focus on the quasi-Newton
method proposed by Broyden, Fletcher, Goldfarb, and Shan-
non (BFGS) [14]-[15]. Specifically, we define the iterate dif-
ference st := wt+1 − wt and the gradient difference qt :=
∇f t+1 − ∇f t. A Hessian inverse approximation scheme is

Algorithm 1 Two-Loop recursion of L-BFGS

Input: h = ∇f t, {sk, qk}t−1
k=t−c

1: for k = t− 1, . . . , t− c do
2: αk ← ρk〈sk, h〉
3: h← h− αkqk
4: end for
5: r ← (Ĥt,0)−1h
6: for k = t− c, . . . , t− 1 do
7: β ← ρk〈qk, r〉
8: r ← r + (αk − β)sk

9: end for
Output: r = (Ĥt,c)−1∇f t

iteratively obtained as follows:(
Ĥt+1

)−1

=
(
V t
)> (

Ĥt
)−1

V t + ρtst
(
st
)>
, (4)

where ρt = 1/〈qt, st〉, and V t = I−ρtqt(st)>. In the BFGS
scheme [16], the approximation (Ĥt)−1 is stored and thus
the update can be directly computed as rt = −(Ĥt)−1∇f t
without solving a linear system as in the Newton method:
this reduces the computation costs from O(d3) to O(d2) for
general problems. Nevertheless, (4) approximates (Ĥt)−1

as a function of the initialization (Ĥ0)−1 and {sk, qk}t−1
k=0,

i.e., the entire history of the iterates. Since early iterates tend
to carry less information on the current curvature, Limited-
memory BFGS (L-BFGS) [17] was proposed to store only
{sk, qk}t−1

k=t−c to estimate the update direction using Algo-
rithm 1 [13]. Note that L-BFGS operates solely on vectors,
thus it not only reduces the storage costs from O(d2) to
O(cd), but also only requires O(cd) computation.

3. PROPOSED METHOD

ADMM solves (3) and equivalently (1) by operating on the
Augmented Lagrangian defined as:

L(w, θ, z; y, λ) = F (w) + g(θ) + y>(Aw −Bz)

+λ>(S>w − θ) + µz
2 ‖Aw −Bz‖

2
+ µθ

2

∥∥S>w − θ∥∥2
.

At each iteration, ADMM sequentially minimizes L(·) with
respect to primal variables (w, θ, z) and then performs gradi-
ent ascent on dual variables (y, λ). Specifically,

wt+1 = argmin
w

L(w, θt, zt; yt, λt), (5a)

θt+1 = argmin
θ
L(wt+1, θ, zt; yt, λt), (5b)

zt+1 = argmin
z
L(wt+1, θt+1, z; yt, λt), (5c)

yt+1 = yt + µz(Aw
t+1 −Bzt+1), (5d)

λt+1 = λt + µθ(S
>wt+1 − θt+1). (5e)



Note that above updates fall into the category of 3-block
ADMM which is not guaranteed to converge for arbitrary
µz, µθ > 0 [18]. Moreover, step (5a) requires the solution of
a sub-optimization problem: this typically involves multiple
inner-loops and thus induces heavy computational burden on
agents. We propose to approximate step (5a) by performing
the following one-step update:

wt+1 = wt − (Ĥt)−1∇wL(wt, θt, zt; yt, λt), (6)

where (Ĥt)−1 is obtained by using L-BFGS (Algorithm 1)
for an appropriate choice of {sk, qk} pairs. Step (5b) is equiv-
alent to the following proximal step:

θt+1 = proxg/µθ
(
S>wt+1 + 1

µθ
λt
)

(7)

= argmin
θ

{
g(θ) + µθ

2

∥∥∥S>wt+1 + 1
µθ
λt − θ

∥∥∥2
}
.

Remark: First note that the Hessian of L(·) with respect to w
can be expressed as:

Ht = ∇2F (wt) + µzD + µθSS
>, (8)

where D = A>A ∈ Rmd is a constant diagonal matrix
with its i-th block being |Ni|Id. Moreover, since F (w) =∑m
i=1 fi(wi), we conclude that Ht is block diagonal. This

is only possible by introducing the intermediate consensus
variable z. If the consensus constraint is directly enforced
as wi = wj , then Ht would have the same sparsity pattern
as the network, i.e., the ij-th block of Ht would be nonzero
if (i, j) ∈ E . Having a block-diagonal Hessian is crucial
to eliminate inner-loops for computing quasi-Newton steps.
This is because the presence of off-diagonal entries dictates
that computing the updates would involve K additional com-
munication rounds among the network, whereK ≥ 0 denotes
the number of terms used in the Taylor expansion of (Ht)−1

[19]. We proceed to define the {sti, qti} pair for L-BFGS
approximation used by the i-th agent as follows:

qki := ∇fi(wk+1
i )−∇fi(wki ) + (µz|Ni|+ δilµθ + ε) ski ,

ski := wk+1
i − wki , (9)

where δil = 1 if i = l and 0 otherwise, and ε > 0 brings
additional robustness to the algorithm. We emphasize that qki
can be computed entirely using local information of agent i;
this is due to the intermediate consensus variables {zij} as ex-
plained above. Moreover, since we approximate the Hessian
of the augmented Lagrangian (8) instead of just ∇2F (wt),
the update (Ĥt)−1∇wL can be computed at the cost ofO(cd)
using Algorithm 1. This is in contradistinction to [19] which
opts to approximate ∇2F (wt) only, whence a linear system
has to be solved. We proceed to state a lemma that allows for
efficient implementation.
Lemma 1. Define As := Âs ⊗ Id Ad := Âd ⊗ Id. With
zero initialization of {yt, zt}, the following holds: yt can be

Algorithm 2 L-BFGS−ADMM
Initialization: zero initialization for all variables.

1: for t = 0, . . . , T do
2: for each active agent i do
3: Retrieve wj , j ∈ Ni from the buffer.
4: hi ← ∇fi(wi) + φi + µz

2

∑
j∈Ni (wi − wj) +

δilµθ(wi − θi + 1
µθ
λi)

5: Compute the update direction ri using Algorithm
1 with hi and {ski , qki }

τi−1
k=τi−c defined in (9).

6: wi ← wi − ri
7: φi ← φi + µz

2

∑
j∈Ni (wi − wj)

8: Broadcast wi to neighbors
9: if i = l then

10: θi ← proxgi/µθ
(
wi + 1

µθ
λi

)
11: λi ← λi + µθ (wi − θi)
12: end if
13: Store {sτii , q

τi
i } and discard {sτi−ci , qτi−ci }

14: end for
15: end for

decomposed as yt = [(αt)>,−(αt)>]>,

∇wLt = ∇F (wt) + φt + µz
2 Lsw

t + µθS(S>wt − θt)
+Sλt, and zt = 1

2 (As +Ad)w
t. (10)

where φt := (As−Ad)>αt and Ls := (As−Ad)>(As−Ad)
corresponds to the graph Laplacian.

There are two implications from Lemma 1: (i) we only
need to store and update half of yt since it contains entries that
are opposite of each other; (ii) there is no need to explicitly
store and update zt since it evolves on a manifold defined by
wt.

We explicate the proposed method in Algorithm 2: it ad-
mits an asynchronous implementation, where τi represents
the counter for agent i. Each agent uses a buffer that stores
the most recent {wj} values communicated from its neigh-
bors. An active agent i first retrieves wj , j ∈ Ni, and then
compute the corresponding subvector ∇wLti in line 4. The
quasi-Newton update is then computed in the line 5 at the
cost ofO(cd), where c is the number of {ski , qki } pairs stored.
After updating wi (in line 6), active agent i proceeds to up-
date φi in line 7. The l-th agent additionally performs updates
pertaining to the nonsmooth regularization function (lines 9-
12). The stored {ski , qki } is updated by discarding the one that
is computed τi − c steps ago when agent i was activated and
adding the most recent {sτii , q

τi
i }.

4. CONVERGENCE ANALYSIS

The analysis is carried assuming a connected network along
with the following assumption on local cost functions.
Assumption 1. Local cost functions fi : Rd → R, i ∈ [m], are
strongly convex with constant mf and have Lipschitz contin-



uous gradient with constant Mf . The local regularizer gi(·) :
Rd → R is proper, closed, and convex.

We denote the unique optimal primal pair as (w?, θ?), and
the unique dual pair as (α?, λ?), where α? lies in the column
space of (As − Ad). Primal uniqueness follows from strong
convexity and we refer the reader to [20] for existence and
uniqueness of dual optimal solutions. We proceed to state
a lemma that captures the effect of replacing the exact opti-
mization step (5a) with a quasi-Newton step (6).
Lemma 2. Define Lu := (As + Ad)

>(As + Ad) and Es :=
(As − Ad). Under Assumption 1, the iterates generated by
L-BFGS−ADMM and the optimal (w?, α?, λ?) satisfy:

∇F (wt+1)−∇F (w?) + E>s (αt+1 − α?) + S
(
λt+1 − λ?

+µθ(θ
t+1 − θt)

)
+
(
µz
2 Lu + εI

)
(wt+1 − wt) + et = 0

where et = ∇F (wt)−∇F (wt+1)+(Ĥt−µzD−µθSS>−
εI)(wt+1 − wt). Proof : See the Appendix of [21].

Lemma 2 captures the error et induced when replac-
ing the primal optimization step (5a) with a quasi-Newton
step, i.e., et = 0 corresponds to (5a). We first introduce
the following notation before presenting Theorem 1. Denote
u = [w>, z>, θ>, α>, λ>]> and similarly u? as the optimum,

σ+
min as the smallest positive eigenvalue of

[
Es
S>

] [
E>s S

]
,

and σGmax, σ
G
min as the largest and the smallest eigenvalue of

Lu. We capture the asynchrony of the algorithm by defining
Ωt as a diagonal random matrix whose blocks activate the
corresponding agent (updates wi) or edge (updates αi). We
denote Et[Ωt+1] = Ω and pmin := min

i
pi, with pi being the

probability of each agent and edge being active.
Theorem 1. Recall Es := As − Ad and Lu := (As +
Ad)

>(As + Ad) from Lemma 2. Let Assumption 1 hold
and assume each agent is activated infinitely often, i,e,
pmin > 0, and let µz = 2µθ, the iterates generated by the
L-BFGS−ADMM using constant initialization γI satisfy:

Et
[∥∥ut+1 − u?

∥∥2

HΩ−1

]
≤
(

1− δ pmin

1+δ

)∥∥ut − u?∥∥2

HΩ−1 ,

where H := Blkdiag[εI, 2µzI, µθI,
2
µz
I, 1

µθ
I], τ t ≤ 2γ +

2c(Mf +µθ(dmax +2)+ ε), dmax = max
i
|Ni|, and δ satisfy:

δ = min

{(
2mfMf

mf+Mf
− 1

ζ

)
1

ε+µθ(σLumax+2)
, 1

2 ,
2
5

µθσ
+
min

mf+Mf
,

µθσ
+
min(ε−ζ(τt)2)

5((τt)2+ε2) ,
σ+
min

5 max{1,σLumax}

}
. (11)

Proof : See the Appendix of [21].

5. EXPERIMENTS

We evaluate the proposed L-BFGS−ADMM against existing
distributed algorithms for multi-agent convex composite op-
timization problems, namely P2D2 [7] and PG-EXTRA [6].

Fig. 1: Performance comparison on the mushrooms dataset
with dimension d = 112. The network size for the left fig-
ure is m = 10 and for the right m = 20. Each agent of
L-BFGS−ADMM stores c = 10 pairs of {si, qi}. All algo-
rithms are synchronous.

Fig. 2: Effects of number of copies stored and the number
of activated agents. We assume a network of 10 agents and
activate 2 agents and 5 agents uniformly at random at the left
and right plots respectively. We use the same hyperparameters
for all cases with c = 5, 10, 15.

We do not compare against PD-QN [19] since it does not sup-
port nonsmooth regularizers and requires O(d3) computation
costs. We consider the following problem:

minimize
w∈Rd

J (w) =

{
1
m

m∑
i=1

fi(w) + ρg(w)

}
,

where fi(w) = 1
mi

∑mi
j=1

[
ln
(

1 + ew
>xj
)

+ (1− yj)w>xj
]
,

g(w) = ‖w‖1, and ρ = 0.0005. We denote mi as the number
of data points held by agent i, where each data point contains
a feature-label pair (xj , yj) ∈ Rd × {0, 1}. We initialize
(Ĥt,0)−1 as a diagonal matrix ΓtI , where the i-th block is

given by γti =
(st−1
i )>qt−1

i

(qt−1
i )>qt−1

i

. Such initialization aims to esti-
mate the norm of the Hessian along the most recent update
direction [13]. We take 5,000 data points from the covtype
dataset with dimension d = 54 and the mushrooms dataset
with dimension d = 112 respectively. Both datasets are avail-
able from the UCI Machine Learning Repository. We plot the

averaged relative costs error RE(t) :=
1
m

∑m
i=1 J (wti)−J (w?)

1
m

∑m
i=1 J (w0

i )−J (w?)

in all cases. From Fig 1, we observe that the proposed algo-
rithm outperforms both baseline methods using the number of
communication rounds as the metric. On the other hand, Fig.
2 shows that storing more copies of {si, qi} can effectively
reduce oscillations and achieve faster convergence rate.
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7. APPENDIX

In this section, we provide the full proofs for our analytical
result. To facilitate the proof, we present some identities that
will be useful for our subsequent presentation. The following
identities connect our constraint matrix to the graph topol-
ogy in terms of signed/unsigned incidence matrix Es/Eu and
signed/unsigned graph Laplacian Ls/Lu.

Es = As −Ad, Eu = As +Ad,

Ls = E>s Es, Lu = E>u Eu,

D = 1
2 (Ls + Lu) = A>s As +A>d Ad.



Assumption 1. Local cost functions fi : Rd → R, i ∈ [m], are
strongly convex with constant mf and have Lipschitz contin-
uous gradient with constant Mf . The local regularizer gi(·) :
Rd → R is proper, closed, and convex.

Proof of Lemma 1: The update for zt+1 in (5c) can be
obtained by solving the following linear system of equations
for zt+1:

B>yt + µzB
>(Awt+1 −Bzt+1) = 0. (12)

Recall the dual update for yt+1 in (5d),

yt+1 = yt + µz(Aw
t+1 −Bzt+1). (5d)

By premultiplying (5d) with B> on both sides, we obtain
B>yt+1 = 0 by (12). Recalling the definition of the ma-
trix B in (3) and rewriting yt+1 := [αt+1;βt+1], we obtain
βt+1 = −αt+1 for all t ≥ 0. With zero initialization of
{yt, zt}, βt = −αt for all t ≥ 0. Therefore the dual update
(5d) can be rewritten as:

αt+1 = αt + µz(Asw
t+1 − zt+1)

−αt+1 = −αt + µz(Adw
t+1 − zt+1).

After summing and taking the difference of above, we obtain:

zt+1 = 1
2Euw

t+1, (13)

αt+1 = αt + µz
2 Esw

t+1. (14)

With zero initialization of {wt, zt}, the equation (13) implies
that zt = 1

2 (As + Ad)w
t = 1

2Euw
t for all t ≥ 0. From the

definition of the augmented Lagrangian, we obtain:

∇wLtµ = ∇F (wt) +A>yt + Sλt + µzA
>(Awt −Bzt)

+ µθS(S>wt − θt). (15)

Since yt = [αt;−αt] as shown previously and A = [As;Ad],
we can rewrite A>yt = E>s α

t = φt. Moreover, A>Bzt =
1
2 (As+Ad)

>(As+Ad)w
t. After substituting these into (15),

we obtain the desired. �
The update for the algorithm can then be summarized as

follows:

wt+1 = wt − (Ĥt)−1
(
∇F (wt) + φt + Sλt + µz

2 Lsw
t

+ µθS(S>wt − θt)
)
, (16)

θt+1 = proxg/µθ (S
>wt+1 + 1

µθ
λt), (17)

φt+1 = φt + µz
2 Lsw

t+1, (18)

λt+1 = λt + µθ(w
t+1 − θt+1). (19)

Proof of Lemma 2: From the primal update, the following
holds:

∇F (wt) + E>s α
t + Sλt + µz

2 Lsw
t + µθS(S>wt − θt)

+Ĥt(wt+1 − wt) = 0, (20)

where φt = E>s α
t. Recall the dual update (18). The follwo-

ing holds:

E>s α
t + µz

2 Lsw
t = E>s α

t+1 − µz
2 Ls(w

t+1 − wt). (21)

Similarly, using (17), we obtain:

Sλt + µθS
>(Swt − θt)

=Sλt+1 − µθS
(
S>(wt+1 − wt)− (θt+1 − θt)

)
. (22)

After substituting (21) and (22) into (20), we obtain:

∇F (wt) + E>s α
t+1 − µz

2 Ls(w
t+1 − wt) + S

(
λt+1

− µθS>(wt+1 − wt) + µθ(θ
t+1 − θt)

)
+ Ĥt(wt+1 − wt) = 0 (23)

After adding and subtracting (µzD + µθSS
> + εI)(wt+1 −

wt) from (23), we obtain

∇F (wt) + E>s α
t+1 + µz

2 Lu(wt+1 − wt) + Sλt+1

+µθS(θt+1 − θt) + ε(wt+1 − wt)
+
(
Ht − µzD − µθSS> − εI

)
(wt+1 − wt) = 0.

Recall the definition of et:

et = ∇F (wt) + (Ĥt − µzD − εI − µθSS>)(wt+1 − wt)
−∇F (wt+1). (24)

After subtracting the following KKT condition and using the
definition of et,

∇F (w?) + E>s α
? + Sλ? = 0,

we obtain the desired. �
We proceed to establish an upper bound for the error term

in the following.
Lemma 3. The error term (24) is upper bounded as follows:∥∥et∥∥ ≤ τ t∥∥wt+1 − wt

∥∥,
where τ t =

∥∥∥Ĥt − Ĥt+1
∥∥∥.

Proof of Lemma 3: Recall the secant condition:

Ĥt+1st = qt, (25)

where the pair {st, qt} is expressed as follows:

st = wt+1 − wt,
qt = ∇F (wt+1)−∇F (wt) + (µzD + εI + µθSS

>)st.

Therefore, by substituting the definition of qt into (25) and
rearranging, we obtain:

(Ĥt+1 − µzD − εI − µθSS>)st = ∇F (wt+1)−∇F (wt).



Using the above and the definition of et in (24), we obtain:

∇F (wt+1)−∇F (wt)

= (Ĥt − µzD − εI − µθSS>)st − et

= (Ĥt+1 − µzD − εI − µθSS>)st.

After rearranging, we obtain:

et = (Ĥt − Ĥt+1)(wt+1 − wt).

By applying the Cauchy-Schwartz inequality, we obtain the
desired. �

We proceed to establish the following technical lemma
that helps us to bound the curvature estimation obtained from
the L-BFGS update.
Lemma 4. Recall the strong convexity parameter mf and the
Lipschitz smooth parameter Mf , where mf ≤Mf . Consider
the pair {st, qt} used in the construction of the L-BFGS up-
date. The following holds:

mf + µz + ε ≤ ‖q
t‖2

(qt)>st
≤Mf +mµz + ε+ µθ

Proof of Lemma 4: We first define

r(wt) = ∇F (wt) + (µzD + εI + µθSS
>)wt.

Then qt = r(wt+1) − r(wt). Moreover, we denote r(wt +
τ(wt+1−wt)), τ ∈ [0, 1], as the r(·) evaluated at some point
between [wt, wt+1]. The following holds:

∂r(·)
∂τ = [∇2F (·) + (µzD + εI + µθSS

>)](wt+1 − wt).

Therefore, we can rewrite qt as:

qt =

∫ 1

0

[∇2F (·) + (µzD + εI + µθSS
>)](wt+1 − wt)dτ.

Denoting Gt =
∫ 1

0
[∇2F (·) + (µzD + εI + µθSS

>)]dτ , we
have Gtst = qt. Note that Gt can be bounded as follows:

(mf + µz + ε)I � Gt � (Mf +mµz + ε+ µθ)I.

Moreover, we can express ‖q
t‖2

(qt)>st
as follows:

‖qt‖2
(qt)>st

= (st)>GtGtst

(st)>Gtst

= (ut)>Gtut

(ut)>ut
, (26)

where we denote ut = (Gt)
1
2 st. Using the bound for Gt and

(26), we obtain the desired. �
We proceed to characterize the curvature estimation ob-

tained by using L-BFGS updates.
Lemma 5. Recall the Lipschitz continuous constant Mf > 0.
Consider the curvature estimation obtained by the L-BFGS
updates, Ĥt

i ∈ Rd×d. The following holds for all t ≥ 0:∥∥∥Ĥt
∥∥∥ ≤ γ + c(Mf +mµz + ε),

where γ is the constant used for initialization of L-BFGS and
c is the number of copies of {sti, qti} pairs, i ∈ [m], used for
constructing Ĥt

i .
Proof of Lemma 5: Recall that the L-BFGS construct the

curvature estimation at each agent as follows:

Ĥt,u+1 = Ĥt,u − Ĥt,usv(sv)>Ĥt,u

(sv)>Ĥt,usv
+
qv(qv)>

(sv)>qv
, (27)

where we have suppressed the subscript i. Note that u ∈
[0, c] denotes the stage of Hessian construction at step t, and
v denotes the time stamp of stored {st, qt} copies, i.e., v ∈
[t − c, t − 1]. By taking the trace on both sides of (27), we
obtain

Tr
(
Ĥt,u+1

)
= Tr

(
Ĥt,u

)
− Tr

(
Ĥt,usv(sv)>Ĥt,u

(sv)>Ĥt,usv

)

+ Tr

(
qv(qv)>

(sv)>qv

)
. (28)

Note that the second term of (28) can be expressed as:

Tr

(
Ĥt,usv(sv)>Ĥt,u

(sv)>Ĥt,usv

)
=

∥∥∥Ĥt,usv
∥∥∥2

(sv)>Ĥt,usv
> 0, (29)

where we have used the fact that Tr(AB) = Tr(BA). Simi-
larly, the third term can be expressed as:

Tr

(
qv(qv)>

(sv)>qv

)
=
‖qv‖2

(sv)>qu

≤Mf +mµz + ε+ µθ, (30)

where the inequality follows from Lemma 4. Using (29) and
(30), we obtain an upper bound for (28) as:

Tr
(
Ĥt,u+1

)
≤ Tr

(
Ĥt,u

)
+Mf + dmaxµz + ε+ µθ,

where dmax = max
i

is the maxim degree. Since the curvature

estimation at step t is obtained by applying (27) iteratively
c times with initialization γI � 0 and Ĥt,u � 0, we have∥∥∥Ĥt

∥∥∥ = maxi{σi} <
∑
σi = Tr(Ĥt) ≤ γ + c(Mf +

dmaxµz + ε+ µθ). �
The following technical lemma is useful for connecting λ

and θ.
Lemma 6. Consider the dual variable λt ∈ Rd and the

primal variable θt ∈ Rd. The following holds:

(λt+1 − λt)>(θt+1 − θt) ≥ 0.

Proof of Lemma 6: Recall the update for θt+1:

θt+1 = proxg/µθ (S
>wt+1 + 1

µθ
λt)

= argmin
θ

{
g(θ) + µθ

2

∥∥∥S>wt+1 + 1
µθ
λt − θt

∥∥∥2
}
.



The optimality condition gives:

0 ∈ ∂g(θt+1)− µθS(S>wt+1 + 1
µθ
λt − θt+1)

= ∂g(θt+1)− λt+1.

Therefore, we obtain (λt+1−λt)>(θt+1−θt) ∈ (∂g(θt+1)−
∂g(θt))>(θt+1 − θt) ≥ 0, where the inequality follows from
the convexity of g(·). �
Lemma 7. Consider the dual variable [αt;λt] ∈ R(n+1)d and
their corresponding optimal pair [α?;λ?] that lies in the col-
umn space of C := [Es;S

>]. Denote σ+
min as the smallest

positive eigenvalue of CC> and we select µz = 2µθ. The
following holds:

σ+
min

(∥∥αt+1 − α?
∥∥2

+
∥∥λt+1 − λ?

∥∥2) ≤
4
(∥∥∇F (wt+1)−∇F (w?)

∥∥2
+
∥∥wt+1 − w?

∥∥2

L
2
u

+ µ2
θ

∥∥θt+1 − θt
∥∥2

+ (τ t)2
∥∥wt+1 − wt

∥∥2)
. (31)

Proof of Lemma 7: We first show that αt;λt stays in the
column space of C. Recall the dual update:[

αt+1

λt+1

]
=

[
αt

λt

]
+

[ µz
2 Es
µθS

>

]
wt+1 −

[
0

µθId

]
θt+1.

We show that the column space of [0; Id] is a subspace of the
column space of C. For fixed θ ∈ Rd, we construct x ∈ Rmd
as x := [θ; . . . ; θ], i.e., x in consensus. Then the following
holds: [

0
Id

]
θ =

[
0
θ

]
=

[
Es
S>

]
x.

Since the choice of θ is arbitrary, we have shown that the
column space of [0; Id] is a subspace of C. It is not hard
to show that there exists a unique [α?;λ?] in the column
space of C. Therefore, by choosing µz = 2µθ, we have
[αt+1 − α?;λt+1 − λ?] staying in the column space of C.
From Lemma 2, the following holds:

E>s (αt+1 − α?) + S(λt+1 − λ?) =

−
{
∇F (wt+1)−∇F (w?) + Lu(wt+1 − wt)

+ µθS(θt+1 − θt) + et
}

Since [αt+1−α?;λt+1−λ?] stays in the column space of C,
[αt+1−α?;λt+1−λ?] is orthogonal to the null space of C>.
Therefore,

σ+
min

(∥∥αt+1 − α?
∥∥2

+
∥∥λt+1 − λ?

∥∥2) ≤
4
(∥∥∇F (wt+1)−∇F (w?)

∥∥2
+
∥∥wt+1 − w?

∥∥2

L
2
u

+ µ2
θ

∥∥θt+1 − θt
∥∥2

+ (τ t)2
∥∥wt+1 − wt

∥∥2)
,

where we have used the fact that (λt+1 − λ?)S>S(λt+1 −
λ?) =

∥∥λt+1 − λ?
∥∥2

, the identity (
∑m
i=1 ai)

2 ≤ m
∑m
i=1 a

2
i ,

and the bound ‖et‖2 ≤ (τ t)2
∥∥wt+1 − wt

∥∥2
. �

We proceed to show that the proposed algorithm con-
verges linearly in the following theorem.

Proof of Theorem 1: We first prove the synchronous case.
By Assumption 1, the following holds:

mfMf

mf+Mf

∥∥wt+1 − w?
∥∥2

+ 1
mf+Mf

∥∥∇F (wt+1)−∇F (w?)
∥∥2

≤ (wt+1 − w?)>(∇F (wt+1)−∇F (w?)). (32)

Using Lemma 2, we express ∇F (wt+1) − ∇F (w?) as fol-
lows:

∇F (wt+1)−∇F (w?) = −
{
E>s (αt+1 − α?) + S(λt+1 − λ?)

+ Lu(wt+1 − wt) + µθS(θt+1 − θt) + et
}
, (33)

where we have denoted Lu := µz
2 Lu + εI . Recall zt =

1
2Euw

t for all t ≥ 0 and Lu = E>u Eu. Therefore, the fol-
lowing holds:

µz
2 Lu(wt+1 − wt) = µzE

>
u (zt+1 − zt). (34)

By substituting (34) into (33), and the result into the RHS
(right-hand side) of (32), we obtain:

RHS = −(wt+1 − w?)>E>s (αt+1 − α?)− (wt+1 − w?)>et

− (wt+1 − w?)>S(λt+1 − λ?)
− µθ(wt+1 − w?)>S(θt+1 − θt)
− ε(wt+1 − w?)>(wt+1 − wt)
− µz(wt+1 − w?)>E>u (zt+1 − zt). (35)

From the dual update, KKT conditions and Lemma 2, the fol-
lowing holds:

(wt+1 − w?)>E>s = 2
µz

(αt+1 − αt)>, (36)

S>(wt+1 − w?) = 1
µθ

(λt+1 − λt) + θt+1 − θ?, (37)

µz(w
t+1 − w?)>E>u = 2µz(z

t+1 − z?)> (38)

After substituting (36)-(38) into (35), we obtain:

RHS = − 2
µz

(αt+1 − αt)>(αt+1 − α?)

− ε(wt+1 − w?)>(wt+1 − wt)
− 2µz(z

t+1 − z?)>(zt+1 − zt)
− 1

µθ
(λt+1 − λt)>(λt+1 − λ?)

− (θt+1 − θ?)>(λt+1 − λ?)− (λt+1 − λt)>(θt+1 − θt)
− µθ(θt+1 − θ?)>(θt+1 − θt)− (wt+1 − w?)>et

≤
(i)
− 2
µz

(αt+1 − αt)>(αt+1 − α?)− (wt+1 − w?)>et

− 1
µθ

(λt+1 − λt)>(λt+1 − λ?)

− µθ(θt+1 − θ?)>(θt+1 − θt)
− ε(wt+1 − w?)>(wt+1 − wt)
− 2µz(z

t+1 − z?)>(zt+1 − zt), (39)



where (i) follows from Lemma 6 and the fact that (λt+1 −
λ?)>(θt+1−θ?) ≥ 0. Using the identity−2(a−b)>(a−c) =

‖b− c‖2 − ‖a− b‖2 − ‖a− c‖2, we can rewrite (39) as:

2RHS ≤ 2
µz

{∥∥αt − α?∥∥2 −
∥∥αt+1 − α?

∥∥2 −
∥∥αt+1 − αt

∥∥2}
+ 1

µθ

{∥∥λt − λ?∥∥2 −
∥∥λt+1 − λ?

∥∥2 −
∥∥λt+1 − λt

∥∥2}
+ µθ

{∥∥θt − θ?∥∥2 −
∥∥θt+1 − θ?

∥∥2 −
∥∥θt+1 − θt

∥∥2}
+ ε
{∥∥wt − w?∥∥2 −

∥∥wt+1 − w?
∥∥2 −

∥∥wt+1 − wt
∥∥2}

+ 2µz
{∥∥zt − z?∥∥2 −

∥∥zt+1 − z?
∥∥2 − zt+1 − zt2

}
− 2(wt+1 − w?)>et

=
∥∥ut − u?∥∥2

H −
∥∥ut+1 − u?

∥∥2

H −
∥∥ut+1 − ut

∥∥2

H

− 2(wt+1 − wt)>et.

Recall that RHS stands for the right-hand side of (32). There-
fore, the following holds:
2mfMf

mf+Mf

∥∥wt+1 − w?
∥∥2

+ 2
mf+Mf

∥∥∇F (wt+1)−∇F (w?)
∥∥2

+ 2(wt+1 − w?)>et +
∥∥ut+1 − ut

∥∥2

H

≤
∥∥ut − u?∥∥2

H −
∥∥ut+1 − u?

∥∥2

H. (40)

To establish linear convergence, we need to show for some
δ > 0, the following holds:

δ
∥∥ut+1 − u?

∥∥2

H ≤
∥∥ut − u?∥∥2

H −
∥∥ut+1 − u?

∥∥2

H. (41)

In light of (40), it suffices to show for some δ > 0, the fol-
lowing holds:

δ
∥∥ut+1 − u?

∥∥2

H ≤
2mfMf

mf+Mf

∥∥wt+1 − w?
∥∥2

+ 2
mf+Mf

∥∥∇F (wt+1)−∇F (w?)
∥∥2

+
∥∥ut+1 − ut

∥∥2

H

+ 2(wt+1 − w?)>et. (42)

We proceed to establish such a bound. Expanding
∥∥ut+1 − u?

∥∥2

H,
we obtain:∥∥ut+1 − u?

∥∥2

H = ε
∥∥wt+1 − w?

∥∥2
+ 2µz

∥∥zt+1 − z?
∥∥2

(43)

+ µθ
∥∥θt+1 − θ?

∥∥2
+ 2

µz

∥∥αt+1 − α?
∥∥2

+ 1
µθ

∥∥λt+1 − λ?
∥∥2
.

Note that the last four terms of above are not present in the
right-hand of (42). We proceed to bound these four terms in
terms of the components of right-hand side of (42). Note that
by choosing µz = 2µθ, we have 2

µz
= 1

µθ
. Therefore, the

following holds:
2
µz

∥∥αt+1 − α?
∥∥2

+ 1
µθ

∥∥λt+1 − λ?
∥∥2

= 1
µθ

(∥∥αt+1 − α?
∥∥2

+
∥∥λt+1 − λ?

∥∥2)
≤ 5

µθσ
+
min

(∥∥∇F (wt+1)−∇F (w?)
∥∥2

+ ε2
∥∥wt+1 − wt

∥∥2

+ µ2
θ

∥∥θt+1 − θt
∥∥2

+ (τ t)2
∥∥wt+1 − wt

∥∥2

+ 4µ2
θσ

Lu
max

∥∥zt+1 − zt
∥∥2)

, (44)

where the last inequality follows from Lemma 7. Moreover,
from the dual update, we obtain:

µθ
∥∥θt+1 − θ?

∥∥2 ≤ 2µθ
∥∥wt+1 − w?

∥∥2
+ 2

µθ

∥∥λt+1 − λt
∥∥2
.

Finally, using (10), we obtain:

2µz
∥∥zt+1 − z?

∥∥2 ≤ µz
2 σ

Lu
max

∥∥wt+1 − w?
∥∥2
.

Substituting these upper bounds for 2
µz

∥∥αt+1 − α?
∥∥2

+
1
µθ

∥∥λt+1 − λ?
∥∥2

, µθ
∥∥θt+1 − θ?

∥∥2
, and 2µz

∥∥zt+1 − z?
∥∥2

into (43), we obtain:∥∥ut+1 − u?
∥∥2

H ≤ (ε+ 2µθ +
µzσ

Lu
max

2 )
∥∥wt+1 − w?

∥∥2

+ 2
µθ

∥∥λt+1 − λt
∥∥2

+ 5
µθσ

+
min

(∥∥∇F (wt+1)−∇F (w?)
∥∥2

+ ε2
∥∥wt+1 − wt

∥∥2
+ µ2

θ

∥∥θt+1 − θt
∥∥2

+ (τ t)2
∥∥wt+1 − wt

∥∥2

+ 4µ2
θσ

Lu
max

∥∥zt+1 − zt
∥∥2)

.

Therefore, to establish (42), it is sufficient to show for some
δ > 0, the following holds for some δ > 0:

δ

[
(ε+ 2µθ +

µzσ
Lu
max

2 )
∥∥wt+1 − w?

∥∥2
+ 2

µθ

∥∥λt+1 − λt
∥∥2

+ 5
µθσ

+
min

(∥∥∇F (wt+1)−∇F (w?)
∥∥2

+ ε2
∥∥wt+1 − wt

∥∥2

+ µ2
θ

∥∥θt+1 − θt
∥∥2

+ (τ t)2
∥∥wt+1 − wt

∥∥2

+ 4µ2
θσ

Lu
max

∥∥zt+1 − zt
∥∥2)]

+ ζτ2
∥∥wt+1 − wt

∥∥2

≤
( 2mfMf

mf+Mf
− 1

ζ

)∥∥wt+1 − w?
∥∥2

+ ε
∥∥wt+1 − wt

∥∥2

+ 2
mf+Mf

∥∥∇F (wt+1)−∇F (w?)
∥∥2

+ 2µz
∥∥zt+1 − zt

∥∥2

+ 2
µz

∥∥αt+1 − αt
∥∥2

+ 1
µθ

∥∥λt+1 − λt
∥∥2

+ µθ
∥∥θt+1 − θt

∥∥2

where we have used−ζ‖et‖2− 1
ζ

∥∥wt+1 − w?
∥∥2 ≤ 2(wt+1−

w?)>et holds for any ζ > 0, and the bound for ‖et‖ from
Lemma 3, i.e., ‖et‖2 ≤ (τ t)2

∥∥wt+1 − wt
∥∥2

. The above in-
equality holds by selecting δ as:

δ = min

{(
2mfMf

mf+Mf
− 1

ζ

)
1

ε+µθ(σLumax+2)
, 1

2 ,
2
5

µθσ
+
min

mf+Mf
,

µθσ
+
min(ε−ζ(τt)2)

5((τt)2+ε2) ,
σ+
min

5 max{1,σLumax}

}
. (45)

Note that a uniform upper bound for τ t can be obtained by
considering Lemma 3 and Lemma 5, i.e., τ t ≤ 2γ+2c(Mf +
dmaxµz + ε) for all t ≥ 0. By selecting δ as in (45), we es-
tablish (41), which proves the linear convergence of the syn-
chronous algorithm. For the asynchronous algorithm, we first
express the synchronous algorithm as ut+1 = Tut by defin-
ing the operator T : R(m+2n+2)d → R(m+2n+2)d. Then the
asynchronous algorithm can be expressed as:

ut+1 = ut + Ωt+1(Tut − ut),



where

Ωt+1 =


Xt+1 0 0 0 0

0 Y t+1 0 0 0
0 0 Y t+1 0 0
0 0 0 Xt+1

ll 0
0 0 0 0 Xt+1

ll

 , (46)

and Xt+1 ∈ Rmd×md, Y t+1 ∈ Rnd×nd are diagonal random
matrices with each block Xt+1

ii ∈ Rd×d, i ∈ [m] and Y t+1
kk ∈

Rd×d, k ∈ [n], taking values Id or 0. If we distribute wi, i ∈
[m], to agents and (zk, αk), k ∈ [n] to edges, then wt+1

i is
updated if and only ifXt+1

ii = Id and (zt+1
k , αt+1

k ) is updated
if and only if Y t+1

ii = Id. We denote Et[Ωt+1] = Ω. The
proof proceeds as follows:∥∥ut+1 − u?

∥∥2

HΩ−1

=
∥∥ut + Ωt+1(Tut − ut)− u?

∥∥2

HΩ−1

=
∥∥ut − u?∥∥2

HΩ−1 + 2(ut − u?)>HΩ−1Ωt+1(Tut − ut)
+ (Tut − ut)>Ωt+1HΩ−1Ωt+1(Tut − ut), (47)

Since Ωt+1,Ω−1,H are diagonal matrices, they all commute
with each other. Moreover, since the sub-blocks of Ωt+1 are
either Id or 0, Ωt+1Ωt+1 = Id. After taking Et[·] on both
sides of (47), we obtain:

Et
[∥∥ut+1 − u?

∥∥2

HΩ−1

]
=
∥∥ut − u?∥∥2

HΩ−1 + 2(ut − u?)>H(Tut − ut)

+
∥∥Tut − ut∥∥2

H

≤
(i)

∥∥ut − u?∥∥2

HΩ−1 − δ
1+δ

∥∥ut − u?∥∥2

H

≤
(ii)

(
1− pminδ

1+δ

)∥∥ut − u?∥∥2

HΩ−1 , (48)

where (i) follows from the fact that 2(u− u?)>H(Tu− u) +

‖Tu− u‖2H ≤ −
δ

1+δ‖u− u
?‖2H for any u ∈ R(m+n+2)d

using (41); (ii) δ
1+δ‖u

t − u?‖H ≥
pminδ
1+δ ‖u

t − u?‖2HΩ−1 . �
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