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ABSTRACT

Sampling and interpolation have been extensively studied,

in order to reconstruct or estimate the entire graph signal

from the signal values on a subset of vertexes, of which most

achievements are about continuous signals. While in a lot of

signal processing tasks, signals are not fully observed, and

only the signs of signals are available, for example a rating

system may only provide several simple options. In this pa-

per, the reconstruction of band-limited graph signals based

on sign sampling is discussed and a greedy sampling strat-

egy is proposed. The simulation experiments are presented,

and the greedy sampling algorithm is compared with random

sampling algorithm, which verify the validity of the proposed

approach.

Index Terms— Graph signal, band-limited, sign informa-

tion, greedy sampling

1. INTRODUCTION

In general, many types of data in life can be modeled as graph

signals, such as transportation networks, social networks, etc

[1–3]. Graph signal processing (GSP) has been one of the

emerging fields in the signal processing community in re-

cent years [4, 5]. Based on current research, GSP has a wide

range of application scenarios in semantic segmentation, be-

havior recognition, community discovery, traffic prediction

and other aspects [6]. Based on the graph Fourier Transform

(GFT), techniques analogous to those in the classical Fourier

theory have been developed in the GSP setting [7]. Common

graph signals in life often show bandlimited characteristics,

i.e. signal values are similar on similar vertexes [8]. For in-

stance, in social networks, people who are closely connected

tend to show similar preferences. This paper focuses on such

signals.

It is a fundamental problem of GSP to recover graph sig-

nals from limited samples with noise [9,10]. At present, there

are two main sampling schemes: deterministic selection and

random selection [9,11]. The deterministic approach is trying

to find a sampling set that minimizes a preset loss function.

While the random approach usually calculates the sampling

probability distribution of each node according to its impor-

tance. In practice, random selection is of low computational

load, but may need more samples than deterministic selection

to achieve equivalent sampling effect for subsequent recon-

struction.

In many cases, the data we’re dealing with is enor-

mous as well as hard to get accurate and continuous val-

ues. For instance, in a goods ranking system, we may

only see the people’s simple evaluations for goods such

as “like”,“dislike”,“indifferent”. In this scenario, getting an

exact score for each item is often a hassle, whereas it may

be easier to find out it is just rated as “like” or “dislike”,

which can be viewd as 1 and −1 respectively. Such “like”

and “dislike” are the sign information we work on.

As a extremely simple information on a graph signal, ac-

quiring the signs of signal value on nodes results in small

computation load, because it is a low bit quantization of the

graph signal [12]. Due to this advantage of sign information,

we try to recover the original graph signal from the limited

samples with the help of such coarse information.

In this paper, we investigate the problem of reconstruct-

ing band-limited graph signals from the signs of signal val-

ues on a subset of vertexes. we propose an effective signal

sampling scheme and a corresponding signal reconstruction

algorithm based on sign information. Furthermore, the char-

acteristics and effects of sampling and recovery algorithm are

analyzed theoretically. Finally, we present some simulation

experiments on different data sets to test the performance of

the proposed algorithm, and the results verify the validity of

our work.

2. MODEL

A connected undirected graph G with N vertexes can be rep-

resented as: G = {V , E ,W}, where V is the set of vertexes,

E is the set of edges, and W ∈ R
N×N is the weighted ad-

jacency matrix with elements Wij > 0 if (i , j ) ∈ E , oth-

erwise Wij = 0. The degree of vertex i is di =
∑

j Wij ,
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and the degree matrix D is a N × N diagonal whose ith di-

agonal element is di . The graph Laplacian L is defined as:

L = D −W . Obviously, it is real symmetric, with eigen-

decomposition L = UΛUT , where Λ is diagonal matrix of

eigenvalues 0 = λ1 ≤ λ2 ≤ · · · ≤ λN and U = [u1, ...,uN ]
is an orthonormal matrix containing the corresponding eigen-

vectors.

A graph signal x := V 7→ R is a vector defined on graph

G. Its GFT can be written as: x̂ = UTx. Each component

of x is the corresponding frequency domain coefficient. Let

fL, fU be positive integers, if a graph signal satisfies: x̂k = 0
for all k 6∈ [fL, fU ], then it is called band-limited with pass-

band [fL, fU ], bandwidth B = fU − fL + 1. For such signals,

they are in the following constraint space:

Cb =
{

x ∈ R
N | ∀i 6∈ [fL, fU ],uT

i x = 0
}

(1)

According to the above formula, it is easy to see that Cb is a

closed convex cone in R
N [13].

Consider obtaining M samples on a subset V ′ of V , i.e.

|V ′| = M , then the sampling process can be described as:

y = Ψvx

where Ψv ∈ R
M×N is vertex-domain sampling matrix, with

elements (Ψv )ij = 1 if the i th sample is j , and 0 otherwise.

The sign information at a vertex comes from a sign oper-

ation of the signal at the corresponding vertex. For example,

the sign on vertex i is sign(xi), where

sign(x) =







−1 x < 0
1 x > 0
0 otherwise

(2)

The sampling process of sign information on vertexes can be

described as:

Sx = sign (Ψvx) (3)

For a signal with sign Sx on vertexes, from (3) we can

derive that the signal should be confined to a constraint space

whose closed convex hull is:

Cv =
M
∩
i=1

{

x ∈ R
N |aT

i x ≤ 0
}

(4)

where ai is a all zero vector except that its j th component is

±1, which depends on (Sx )i . If (Sx )i = 0, then “≤” in (4)

becomes “=”. It is not hard to prove that Cv is also a closed

convex cone in R
N [13].

3. RECONSTRUCTION ALGORITHM

Based on the model in the previous section, the graph signal is

recovered by continuous projection onto the convex constraint

spaces in this section [14].

Through sign information in the sampling set, the original

band-limited graph signal lies in space: C = Cb ∩Cv , which

is likewsie a closed convex cone. Due to the fact that Cb and

Cv are both closed convex cones, we can define the projection

operators of them [14].

Projecting any signal onto Cb requires only one band-pass

filtering operation:

P b = UΓUT (5)

where Γ is a diagonal matrix in which the diagonal elements

are 1 inside the passband and 0 outside the passband.

The projection operation onto Cv can be defined as:

(P vx)j :=

{

0 j ∈ V ′, sign (xj ) 6= (Sx )i
xj otherwise

(6)

According to the definition of constraint space and pro-

jection operator, the signal can be reconstructed by continu-

ously projecting onto these convex sets. Specifically, for any

arbitary initial signal x0, the applied algorithm is a simple

iterative process:

xn+1 = P bP vxn (7)

In terms of the settings of the reconstruction iterative al-

gorithm, we can verify that each projection is a firmly non-

expansive operation. At the same time, the two constraint

spaces are very special and conform to the characteristic of

bounded linear regularity.

The following theorem can be derived based on these con-

ditions.

Theorem 1. The iterative sequence {xn} converges to some

point x∗ in C, and the convergence rate is independent of the

selection of the initial point x0.

Proof. See Appendix A for details.

4. DESIGN OF SAMPLING SET

The previous section is about methods for recovering signals

from sampled information. This section explores how to op-

timize recovery.

Since the recovery sequence of the graph signal will con-

verge to the feasible region, an attempt to optimize the feasi-

ble region can be made to improve the recovery performance.

As we know, in the whole process of sampling and recovery,

the feasible region of the signal depends on the sampling re-

sults, which is manageable for us, we can adjust the feasible

region by adjusting the sample set. To sum up, we aim to

design a sampling set with a better feasible region.

4.1. Feasible Region Analysis

From the previous discussion, we can already make it clear

that the feasible region is a finite-dimensional closed convex

cone. If we want to make it smaller, it is necessary to deter-

mine a metric for its size.



Any vector in a closed convex cone can be represented lin-

early by extreme vectors with non-negative coefficients [15]:

C =

{

r
∑

i=1

ωiϕi|ωi ≥ 0

}

(8)

In our paper, the convex cone is finite-dimensional, i.e. the

set of extreme vectors is finite.

Denote UB = [ufL , ...,ufu ], then since the columns of

UB are orthonormal, for any two signals β1, β2 in C with co-

ordinates α1, α2, we can get 〈β1,β2〉 = 〈UBα1,UBα2〉 =
〈α1,α2〉. So in other words, denoting the feasible region of

coordinates as Ĉ, we can transform the exploration of the C

into the exploration of Ĉ, because it is of one-to-one corre-

spondence between vectors in C and Ĉ. According to (4), Ĉ

can be written as:

Ĉ =
M
∩
i=1

{

x ∈ R
B |aT

i UBx ≤ 0
}

(9)

Since the recovery signal is expected to be as close to the

original signal as possible, that is, the angle between them is

as small as possible, hence we try to use the biggest angle

among extreme vectors as the metric. Let Z be the set of

normalized extreme vectors of Ĉ , then the metric for its size

can be represented as:

θ = min
γ,µ∈Z

〈γ,µ〉 (10)

4.2. The Corresponding Optimization Problem

Since the feasible region in the sampling process needs to sat-

isfy the sign constraints under the current sampling result, an

intuitive idea is that each additional sampling constraint can

minimize the feasible region to the greatest extent. On the

grounds of this idea, we can express the problem in math-

ematical form. Assume the current sampling set is S, next

sample is ξ after sampling s times, γ,µ are the coordinates

of any two extreme vectors of Ĉ under orthonormal basis UB .

Then our sampling process can be described as:

max
ξ

(

min
γ,µ∈Z

〈γ, µ〉

‖γ‖ · ‖µ‖

)

s.t. sign





fU
∑

i=fL

(γiui)j



 = sign (xj)

sign





fU
∑

i=fL

(µiui)j



 = sign (xj)

where j ∈ S ∪ {ξ}.

4.3. Greedy Sampling Algorithm

According to the above optimization problems, the corre-

sponding sampling algorithm can be designed. It should be

noted that there is no extreme vector until the number of sam-

ples reaches B − 1. Therefore, we need to determine the first

B − 1 samples according to other strategies. Here, we sort

the norms of the row vectors of UB in descending order, and

select the first B − 1 indices as the first B − 1 samples. After

that, we can continue sampling according to the principle of

reducing the maximum angle of extreme vectors. But if we

compute all the extreme vectors for each unsampled vertex

every time, it’s of very high complexity.

To address this issue, we propose a greedy sampling algo-

rithm. As we know, for every additional sample, we’re adding

a constraint to our current feasible region. For example, if we

choose ξ as the next sample, of which the sign is negative, in

that way the new feasible region becomes Ĉ ∩ {x|UB(ξ, :
)x ≤ 0}, where UB(ξ, :) is the ξth row vector of UB . The

boundary of the new constraint is a hyperplane {x|UB(ξ, :
)x = 0}. To better illustrate, refer to Figure 1. In Figure 1, the

Fig. 1. An example of a feasible region in sampling

gray polygon area is a cross section of this cone, i.e. the fea-

sible region, in down direction towards the origin. The solid

orange line stands for the hyperplane {x|UB(ξ, :)x = 0}.
The blue and green solid dots represent the extreme vectors

in the current feasible region, and the red solid dots repre-

sent the new extreme vectors associated with the hyperplane.

Without loss of generality, assume the left halfspace where

the blue dots lie is {x|UB(ξ, :)x ≤ 0}, which means if we

choose ξ as the next sample, then the new feasible region is

the part of the current feasible region to the left of the hyper-

plane. On condition that the sign of the signal on ξ is positive,

the part on the right side of the hyperplane is the new feasible

region instead. All unsampled vertexes correspond to a hy-

perplane, our target is to find a suitable unsampled vertex that

its hyperplane can reduce the maximum angle of the extreme

vectors.

For the extreme vectors with the biggest angle t1, t2 in

the current feasible region, for example, A and D in Figure

1, if t1 and t1 are not separated by the new hyperplane of a

unsampled vertex, then we would not choose it as the next

sample, because if this pair of vectors are still in the new fea-

sible region probably, the new feasible region might be as big



as the previous one. We call such sampling invalid.

How to evaluate all the valid samples is the following

question. Here we can see all the valid hyperplanes divide the

feasible region into two parts. If these two parts are divided

as evenly as possible, then whatever the sign is, the new fea-

sible would not be too bad. In other words, if these two parts

are greatly different from each other, there is a high risk that

the new feasible region would be almost as large as the pre-

vious one. As a result, we want all the extreme vectors to

lie roughly “equidistant” on both sides of the hyperplane un-

der consideration. Refer to Figure 1, the dotted line segment

stands for the distance from the corresponding extreme vector

to the hyperplane. If the sum of these distances on both sides

are numerically close, as thus the feasible region is roughly

“cut” in half. Based on these analyses, the greedy algorithm

can be presented as:

Algorithm 1 Greedy Sampling Algorithm

Input: Sampling budget M , UB , bandwidth B, graph topol-

ogy G
Output: sampling set S

1: S ← {},r← −∞
2: sort the norms of row vectors of UB in descending order,

get the first B − 1 indices S0, S ← S0
3: for i in G.V\S do

4: calculate each Z for xi > 0, xi < 0, xi = 0, and the

respective θ1, θ2, θ3 using (10)

5: θ ← min{θ1, θ2, θ3}
6: if θ > r then

7: r ← θ,j ← i

8: end if

9: end for

10: S ← S ∪ {j}
11: determine t1,t2 according to the acquired sign(xj)
12: s← B + 1,d← +∞
13: while s < M + 1 do

14: for i in G.V\S do

15: if [UB(i, :)t1] · [UB(i, :)t2] < 0 then

16: calculate the sum of the distances d1, d2 of the

extreme vectors on both sides to the hyperplane

{x|UB(i, :)x = 0}
17: if |d1 − d2| < d then

18: d← |d1 − d2|,j ← i

19: end if

20: end if

21: end for

22: S ← S ∪ {j}, s← s+ 1,d← +∞
23: update extreme vectors

24: end while

5. SIMULATION

In this section, we investigate the performance of the greedy

sampling algorithm proposed in the previous section through

simulation experiments.

In the following experiment, we first apply the Algorithm

2 and some other sampling methods to get the correspond-

ing sampling sets, and next we choose K initial signals to

recover the original signal using (7). Then we compare the

reconstruction quality by the average error in angle defined

as:

δ =
1

K

K
∑

i=1

arccos〈x, x∗

i 〉 (11)

where x∗

i stands for the normalized recovery signal of the ith

initial signal (1 ≤ i ≤ K). The larger δ is, the bigger the

error of recovery is.

Consider a band-limited graph signal on a sensor graph

generated from gspbox in Matlab, which is shown in Figure

2 [16].The parameters of the graph topology are: N = 40,

|E| = 153, fL = 29, fU = 35.
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Fig. 2. A band-limited graph signal of unit amplitude and its

sign information on vertexes

We applied our sampling algorithm and random sampling

algorithm 50 times to obtain their respective sample sets, and

then calculate the recovery error of 10000 iterations under 50

initial random signals for each sampling set.

We compared the average error in angle of greedy sam-

pling and random sampling at different sampling rate, as pre-

sented in the Figure 3(a), where the dotted pink line stands for

the average error in angle for full sampling.

As we can see, with the increase of sampling rate, the av-

erage error in angle goes down continuously. Among them,

the error in angle of the greedy sample set is always the small-

est, i.e. the recovery performance is the best.

In addition, we give the trend of the error in angle during

the iteration in a certain recovery process at 40% sampling

rate in Figure 3(b). From the figure, under the proposed re-

covery algorithm, the error in angle converges quickly. Be-

sides, compared with random sampling, the error in angle of

greedy sampling set descends more steeply.

6. CONCLUSION

In this paper, we put forward the idea of sign sampling and

recovery of band-limited graph signals. Based on sign infor-
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Fig. 3. Comparison of recovery performance between greedy

sampling and random sampling (a) at different sampling rate

(b) during a iteration at 40% sampling rate

mation on vertexes, we propose corresponding reconstruction

and greedy sampling algorithm for band-limited graph siganl.

On the one hand, we guarantee the performance of the recov-

ery algorithm by theoretical proof. On the other hand, sim-

ulation results show that greedy sampling algorithm has bet-

ter performance than random sampling. In all, we think this

work has practical significance to a certain extent and could

be valuable in the field of sampling and recovery of graph

signals.

7. APPENDIX

7.1. Appendix A

Lemma 1. Each projection is a firmly non-expansive opera-

tion.

Proof. From (5), we can get ‖2P b − I‖ = ‖2UΓUT − I‖.
P b has only 2 eigenvalues, 0 and 1, because the diagonal el-

ements of Γ are either 0 or 1. Then 2UΓUT − I has only

2 eigenvalues, −1 and 1. It is not hard to demonstrate that

2UΓUT − I is symmetric, so (2UΓUT − I)T (2UΓUT −

I) = (2UΓUT − I)2, which only has an eigenvalue of

1. Hence, ‖2P b − I‖ = 1, the operator 2P b − I is non-

expansive, i.e., P b is firmly non-expansive.

From (6), we can get

((2P v − I)x)j =

{

xj sign(xj) = (Sx)i
−xj sign(xj) 6= (Sx)i

Hence, ‖(2P v − I)x‖ = ‖x‖, the operator 2P v − I is non-

expansive, i.e., P v is firmly non-expansive.

Lemma 2. {Cb, Cv} is boundedly linearly regular.

Proof. For Cb,Cv and C, they are all closed convex cones in

finite-dimensional Hilbert spaces. By means of Proposition

5.4 and 5.9 in [17], we can derive that the {Cb, Cv} is bound-

edly linearly regular.

In (7), Each iteration is actually made up of two firmly

non-expansive operations. According to the algorithm set-

tings in [17], it is not difficult to verify that this algorithm is

cyclic, singular, and unrelaxed. Furthermore, refer to Defini-

tion 3.18 in [17], we can know that the sequence of projection

operators converges actively pointwise, meanwhile the itera-

tive sequence {xn} is asymptotically regular and Fejér mono-

tone in terms of Corollary 3.5 and Lemma 3.2(iv) in [17],

which yields {xn} converges in norm.

With all these discoveries, under the help of lemma 2 and

using Corollary 3.12 in [17], it is proved that {xn} converges

to some point in C. Then by Theorem 5.7 in [17], we can

futher conclude that the conver-gence rate is independent of

the selection of the initial point x0.

8. REFERENCES

[1] Ljubisa Stankovic, Danilo P Mandic, Milos Dakovic,

Ilia Kisil, Ervin Sejdic, and Anthony G Constantinides,

“Understanding the basis of graph signal processing via

an intuitive example-driven approach [lecture notes],”

IEEE Signal Processing Magazine, vol. 36, no. 6, pp.

133–145, 2019.

[2] Dengyong Zhou and Bernhard Schölkopf, “A regular-

ization framework for learning from graph data,” in

ICML 2004 Workshop on Statistical Relational Learn-

ing and Its Connections to Other Fields (SRL 2004),

2004, pp. 132–137.

[3] Ziwei Zhang, Peng Cui, and Wenwu Zhu, “Deep learn-

ing on graphs: A survey,” IEEE Transactions on Knowl-

edge and Data Engineering, 2020.

[4] David I Shuman, Sunil K Narang, Pascal Frossard, An-

tonio Ortega, and Pierre Vandergheynst, “The emerging



field of signal processing on graphs: Extending high-

dimensional data analysis to networks and other irreg-

ular domains,” IEEE signal processing magazine, vol.

30, no. 3, pp. 83–98, 2013.
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